Left Termination of the query pattern qs(f,b) w.r.t. the given Prolog program could not be shown:



PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof

qs2({}0, {}0).
qs2(.2(X, Xs), Ys) :- part4(X, Xs, Littles, Bigs), qs2(Littles, Ls), qs2(Bigs, Bs), app3(Ls, .2(X, Bs), Ys).
part4(X, .2(Y, Xs), .2(Y, Ls), Bs) :- less2(X, Y), part4(X, Xs, Ls, Bs).
part4(X, .2(Y, Xs), Ls, .2(Y, Bs)) :- part4(X, Xs, Ls, Bs).
part4(underscore, {}0, {}0, {}0).
app3({}0, X, X).
app3(.2(X, Xs), Ys, .2(X, Zs)) :- app3(Xs, Ys, Zs).
less2(00, s1(underscore1)).
less2(s1(X), s1(Y)) :- less2(X, Y).


With regard to the inferred argument filtering the predicates were used in the following modes:
qs2: (f,b) (b,f)
part4: (f,f,f,f) (b,f,f,f) (f,b,f,f) (b,b,f,f)
less2: (f,f) (b,f)
app3: (b,b,f) (b,b,b)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:


qs_2_in_ag2([]_0, []_0) -> qs_2_out_ag2([]_0, []_0)
qs_2_in_ag2(._22(X, Xs), Ys) -> if_qs_2_in_1_ag4(X, Xs, Ys, part_4_in_aaaa4(X, Xs, Littles, Bigs))
part_4_in_aaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_aaaa6(X, Y, Xs, Ls, Bs, less_2_in_aa2(X, Y))
less_2_in_aa2(0_0, s_11(underscore1)) -> less_2_out_aa2(0_0, s_11(underscore1))
less_2_in_aa2(s_11(X), s_11(Y)) -> if_less_2_in_1_aa3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_aa3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_aa2(s_11(X), s_11(Y))
if_part_4_in_1_aaaa6(X, Y, Xs, Ls, Bs, less_2_out_aa2(X, Y)) -> if_part_4_in_2_aaaa6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
part_4_in_gaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_gaaa6(X, Y, Xs, Ls, Bs, less_2_in_ga2(X, Y))
less_2_in_ga2(0_0, s_11(underscore1)) -> less_2_out_ga2(0_0, s_11(underscore1))
less_2_in_ga2(s_11(X), s_11(Y)) -> if_less_2_in_1_ga3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_ga3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_ga2(s_11(X), s_11(Y))
if_part_4_in_1_gaaa6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> if_part_4_in_2_gaaa6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
part_4_in_gaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_gaaa6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
part_4_in_gaaa4(underscore, []_0, []_0, []_0) -> part_4_out_gaaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_gaaa6(X, Y, Xs, Ls, Bs, part_4_out_gaaa4(X, Xs, Ls, Bs)) -> part_4_out_gaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_part_4_in_2_gaaa6(X, Y, Xs, Ls, Bs, part_4_out_gaaa4(X, Xs, Ls, Bs)) -> part_4_out_gaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
if_part_4_in_2_aaaa6(X, Y, Xs, Ls, Bs, part_4_out_gaaa4(X, Xs, Ls, Bs)) -> part_4_out_aaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
part_4_in_aaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_aaaa6(X, Y, Xs, Ls, Bs, part_4_in_aaaa4(X, Xs, Ls, Bs))
part_4_in_aaaa4(underscore, []_0, []_0, []_0) -> part_4_out_aaaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_aaaa6(X, Y, Xs, Ls, Bs, part_4_out_aaaa4(X, Xs, Ls, Bs)) -> part_4_out_aaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_qs_2_in_1_ag4(X, Xs, Ys, part_4_out_aaaa4(X, Xs, Littles, Bigs)) -> if_qs_2_in_2_ag6(X, Xs, Ys, Littles, Bigs, qs_2_in_ga2(Littles, Ls))
qs_2_in_ga2([]_0, []_0) -> qs_2_out_ga2([]_0, []_0)
qs_2_in_ga2(._22(X, Xs), Ys) -> if_qs_2_in_1_ga4(X, Xs, Ys, part_4_in_agaa4(X, Xs, Littles, Bigs))
part_4_in_agaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_agaa6(X, Y, Xs, Ls, Bs, less_2_in_aa2(X, Y))
if_part_4_in_1_agaa6(X, Y, Xs, Ls, Bs, less_2_out_aa2(X, Y)) -> if_part_4_in_2_agaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_ggaa6(X, Y, Xs, Ls, Bs, less_2_in_ga2(X, Y))
if_part_4_in_1_ggaa6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> if_part_4_in_2_ggaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_ggaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(underscore, []_0, []_0, []_0) -> part_4_out_ggaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_ggaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_ggaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_part_4_in_2_ggaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_ggaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
if_part_4_in_2_agaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_agaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
part_4_in_agaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_agaa6(X, Y, Xs, Ls, Bs, part_4_in_agaa4(X, Xs, Ls, Bs))
part_4_in_agaa4(underscore, []_0, []_0, []_0) -> part_4_out_agaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_agaa6(X, Y, Xs, Ls, Bs, part_4_out_agaa4(X, Xs, Ls, Bs)) -> part_4_out_agaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_qs_2_in_1_ga4(X, Xs, Ys, part_4_out_agaa4(X, Xs, Littles, Bigs)) -> if_qs_2_in_2_ga6(X, Xs, Ys, Littles, Bigs, qs_2_in_ga2(Littles, Ls))
if_qs_2_in_2_ga6(X, Xs, Ys, Littles, Bigs, qs_2_out_ga2(Littles, Ls)) -> if_qs_2_in_3_ga6(X, Xs, Ys, Bigs, Ls, qs_2_in_ga2(Bigs, Bs))
if_qs_2_in_3_ga6(X, Xs, Ys, Bigs, Ls, qs_2_out_ga2(Bigs, Bs)) -> if_qs_2_in_4_ga6(X, Xs, Ys, Ls, Bs, app_3_in_gga3(Ls, ._22(X, Bs), Ys))
app_3_in_gga3([]_0, X, X) -> app_3_out_gga3([]_0, X, X)
app_3_in_gga3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_gga5(X, Xs, Ys, Zs, app_3_in_gga3(Xs, Ys, Zs))
if_app_3_in_1_gga5(X, Xs, Ys, Zs, app_3_out_gga3(Xs, Ys, Zs)) -> app_3_out_gga3(._22(X, Xs), Ys, ._22(X, Zs))
if_qs_2_in_4_ga6(X, Xs, Ys, Ls, Bs, app_3_out_gga3(Ls, ._22(X, Bs), Ys)) -> qs_2_out_ga2(._22(X, Xs), Ys)
if_qs_2_in_2_ag6(X, Xs, Ys, Littles, Bigs, qs_2_out_ga2(Littles, Ls)) -> if_qs_2_in_3_ag6(X, Xs, Ys, Bigs, Ls, qs_2_in_ga2(Bigs, Bs))
if_qs_2_in_3_ag6(X, Xs, Ys, Bigs, Ls, qs_2_out_ga2(Bigs, Bs)) -> if_qs_2_in_4_ag6(X, Xs, Ys, Ls, Bs, app_3_in_ggg3(Ls, ._22(X, Bs), Ys))
app_3_in_ggg3([]_0, X, X) -> app_3_out_ggg3([]_0, X, X)
app_3_in_ggg3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_ggg5(X, Xs, Ys, Zs, app_3_in_ggg3(Xs, Ys, Zs))
if_app_3_in_1_ggg5(X, Xs, Ys, Zs, app_3_out_ggg3(Xs, Ys, Zs)) -> app_3_out_ggg3(._22(X, Xs), Ys, ._22(X, Zs))
if_qs_2_in_4_ag6(X, Xs, Ys, Ls, Bs, app_3_out_ggg3(Ls, ._22(X, Bs), Ys)) -> qs_2_out_ag2(._22(X, Xs), Ys)

The argument filtering Pi contains the following mapping:
qs_2_in_ag2(x1, x2)  =  qs_2_in_ag1(x2)
[]_0  =  []_0
._22(x1, x2)  =  ._21(x2)
0_0  =  0_0
s_11(x1)  =  s_1
qs_2_out_ag2(x1, x2)  =  qs_2_out_ag1(x1)
if_qs_2_in_1_ag4(x1, x2, x3, x4)  =  if_qs_2_in_1_ag2(x3, x4)
part_4_in_aaaa4(x1, x2, x3, x4)  =  part_4_in_aaaa
if_part_4_in_1_aaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_aaaa1(x6)
less_2_in_aa2(x1, x2)  =  less_2_in_aa
less_2_out_aa2(x1, x2)  =  less_2_out_aa2(x1, x2)
if_less_2_in_1_aa3(x1, x2, x3)  =  if_less_2_in_1_aa1(x3)
if_part_4_in_2_aaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_aaaa1(x6)
part_4_in_gaaa4(x1, x2, x3, x4)  =  part_4_in_gaaa1(x1)
if_part_4_in_1_gaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_gaaa2(x1, x6)
less_2_in_ga2(x1, x2)  =  less_2_in_ga1(x1)
less_2_out_ga2(x1, x2)  =  less_2_out_ga1(x2)
if_less_2_in_1_ga3(x1, x2, x3)  =  if_less_2_in_1_ga1(x3)
if_part_4_in_2_gaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_gaaa1(x6)
if_part_4_in_3_gaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_gaaa1(x6)
part_4_out_gaaa4(x1, x2, x3, x4)  =  part_4_out_gaaa3(x2, x3, x4)
part_4_out_aaaa4(x1, x2, x3, x4)  =  part_4_out_aaaa3(x2, x3, x4)
if_part_4_in_3_aaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_aaaa1(x6)
if_qs_2_in_2_ag6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_2_ag4(x2, x3, x5, x6)
qs_2_in_ga2(x1, x2)  =  qs_2_in_ga1(x1)
qs_2_out_ga2(x1, x2)  =  qs_2_out_ga1(x2)
if_qs_2_in_1_ga4(x1, x2, x3, x4)  =  if_qs_2_in_1_ga1(x4)
part_4_in_agaa4(x1, x2, x3, x4)  =  part_4_in_agaa1(x2)
if_part_4_in_1_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_agaa2(x3, x6)
if_part_4_in_2_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_agaa1(x6)
part_4_in_ggaa4(x1, x2, x3, x4)  =  part_4_in_ggaa2(x1, x2)
if_part_4_in_1_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_ggaa3(x1, x3, x6)
if_part_4_in_2_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_ggaa1(x6)
if_part_4_in_3_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_ggaa1(x6)
part_4_out_ggaa4(x1, x2, x3, x4)  =  part_4_out_ggaa2(x3, x4)
part_4_out_agaa4(x1, x2, x3, x4)  =  part_4_out_agaa2(x3, x4)
if_part_4_in_3_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_agaa1(x6)
if_qs_2_in_2_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_2_ga2(x5, x6)
if_qs_2_in_3_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_3_ga2(x5, x6)
if_qs_2_in_4_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_4_ga1(x6)
app_3_in_gga3(x1, x2, x3)  =  app_3_in_gga2(x1, x2)
app_3_out_gga3(x1, x2, x3)  =  app_3_out_gga1(x3)
if_app_3_in_1_gga5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_gga1(x5)
if_qs_2_in_3_ag6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_3_ag4(x2, x3, x5, x6)
if_qs_2_in_4_ag6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_4_ag2(x2, x6)
app_3_in_ggg3(x1, x2, x3)  =  app_3_in_ggg3(x1, x2, x3)
app_3_out_ggg3(x1, x2, x3)  =  app_3_out_ggg
if_app_3_in_1_ggg5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_ggg1(x5)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG



↳ PROLOG
  ↳ PrologToPiTRSProof
PiTRS
      ↳ DependencyPairsProof
  ↳ PrologToPiTRSProof

Pi-finite rewrite system:
The TRS R consists of the following rules:

qs_2_in_ag2([]_0, []_0) -> qs_2_out_ag2([]_0, []_0)
qs_2_in_ag2(._22(X, Xs), Ys) -> if_qs_2_in_1_ag4(X, Xs, Ys, part_4_in_aaaa4(X, Xs, Littles, Bigs))
part_4_in_aaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_aaaa6(X, Y, Xs, Ls, Bs, less_2_in_aa2(X, Y))
less_2_in_aa2(0_0, s_11(underscore1)) -> less_2_out_aa2(0_0, s_11(underscore1))
less_2_in_aa2(s_11(X), s_11(Y)) -> if_less_2_in_1_aa3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_aa3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_aa2(s_11(X), s_11(Y))
if_part_4_in_1_aaaa6(X, Y, Xs, Ls, Bs, less_2_out_aa2(X, Y)) -> if_part_4_in_2_aaaa6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
part_4_in_gaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_gaaa6(X, Y, Xs, Ls, Bs, less_2_in_ga2(X, Y))
less_2_in_ga2(0_0, s_11(underscore1)) -> less_2_out_ga2(0_0, s_11(underscore1))
less_2_in_ga2(s_11(X), s_11(Y)) -> if_less_2_in_1_ga3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_ga3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_ga2(s_11(X), s_11(Y))
if_part_4_in_1_gaaa6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> if_part_4_in_2_gaaa6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
part_4_in_gaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_gaaa6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
part_4_in_gaaa4(underscore, []_0, []_0, []_0) -> part_4_out_gaaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_gaaa6(X, Y, Xs, Ls, Bs, part_4_out_gaaa4(X, Xs, Ls, Bs)) -> part_4_out_gaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_part_4_in_2_gaaa6(X, Y, Xs, Ls, Bs, part_4_out_gaaa4(X, Xs, Ls, Bs)) -> part_4_out_gaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
if_part_4_in_2_aaaa6(X, Y, Xs, Ls, Bs, part_4_out_gaaa4(X, Xs, Ls, Bs)) -> part_4_out_aaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
part_4_in_aaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_aaaa6(X, Y, Xs, Ls, Bs, part_4_in_aaaa4(X, Xs, Ls, Bs))
part_4_in_aaaa4(underscore, []_0, []_0, []_0) -> part_4_out_aaaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_aaaa6(X, Y, Xs, Ls, Bs, part_4_out_aaaa4(X, Xs, Ls, Bs)) -> part_4_out_aaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_qs_2_in_1_ag4(X, Xs, Ys, part_4_out_aaaa4(X, Xs, Littles, Bigs)) -> if_qs_2_in_2_ag6(X, Xs, Ys, Littles, Bigs, qs_2_in_ga2(Littles, Ls))
qs_2_in_ga2([]_0, []_0) -> qs_2_out_ga2([]_0, []_0)
qs_2_in_ga2(._22(X, Xs), Ys) -> if_qs_2_in_1_ga4(X, Xs, Ys, part_4_in_agaa4(X, Xs, Littles, Bigs))
part_4_in_agaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_agaa6(X, Y, Xs, Ls, Bs, less_2_in_aa2(X, Y))
if_part_4_in_1_agaa6(X, Y, Xs, Ls, Bs, less_2_out_aa2(X, Y)) -> if_part_4_in_2_agaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_ggaa6(X, Y, Xs, Ls, Bs, less_2_in_ga2(X, Y))
if_part_4_in_1_ggaa6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> if_part_4_in_2_ggaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_ggaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(underscore, []_0, []_0, []_0) -> part_4_out_ggaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_ggaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_ggaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_part_4_in_2_ggaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_ggaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
if_part_4_in_2_agaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_agaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
part_4_in_agaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_agaa6(X, Y, Xs, Ls, Bs, part_4_in_agaa4(X, Xs, Ls, Bs))
part_4_in_agaa4(underscore, []_0, []_0, []_0) -> part_4_out_agaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_agaa6(X, Y, Xs, Ls, Bs, part_4_out_agaa4(X, Xs, Ls, Bs)) -> part_4_out_agaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_qs_2_in_1_ga4(X, Xs, Ys, part_4_out_agaa4(X, Xs, Littles, Bigs)) -> if_qs_2_in_2_ga6(X, Xs, Ys, Littles, Bigs, qs_2_in_ga2(Littles, Ls))
if_qs_2_in_2_ga6(X, Xs, Ys, Littles, Bigs, qs_2_out_ga2(Littles, Ls)) -> if_qs_2_in_3_ga6(X, Xs, Ys, Bigs, Ls, qs_2_in_ga2(Bigs, Bs))
if_qs_2_in_3_ga6(X, Xs, Ys, Bigs, Ls, qs_2_out_ga2(Bigs, Bs)) -> if_qs_2_in_4_ga6(X, Xs, Ys, Ls, Bs, app_3_in_gga3(Ls, ._22(X, Bs), Ys))
app_3_in_gga3([]_0, X, X) -> app_3_out_gga3([]_0, X, X)
app_3_in_gga3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_gga5(X, Xs, Ys, Zs, app_3_in_gga3(Xs, Ys, Zs))
if_app_3_in_1_gga5(X, Xs, Ys, Zs, app_3_out_gga3(Xs, Ys, Zs)) -> app_3_out_gga3(._22(X, Xs), Ys, ._22(X, Zs))
if_qs_2_in_4_ga6(X, Xs, Ys, Ls, Bs, app_3_out_gga3(Ls, ._22(X, Bs), Ys)) -> qs_2_out_ga2(._22(X, Xs), Ys)
if_qs_2_in_2_ag6(X, Xs, Ys, Littles, Bigs, qs_2_out_ga2(Littles, Ls)) -> if_qs_2_in_3_ag6(X, Xs, Ys, Bigs, Ls, qs_2_in_ga2(Bigs, Bs))
if_qs_2_in_3_ag6(X, Xs, Ys, Bigs, Ls, qs_2_out_ga2(Bigs, Bs)) -> if_qs_2_in_4_ag6(X, Xs, Ys, Ls, Bs, app_3_in_ggg3(Ls, ._22(X, Bs), Ys))
app_3_in_ggg3([]_0, X, X) -> app_3_out_ggg3([]_0, X, X)
app_3_in_ggg3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_ggg5(X, Xs, Ys, Zs, app_3_in_ggg3(Xs, Ys, Zs))
if_app_3_in_1_ggg5(X, Xs, Ys, Zs, app_3_out_ggg3(Xs, Ys, Zs)) -> app_3_out_ggg3(._22(X, Xs), Ys, ._22(X, Zs))
if_qs_2_in_4_ag6(X, Xs, Ys, Ls, Bs, app_3_out_ggg3(Ls, ._22(X, Bs), Ys)) -> qs_2_out_ag2(._22(X, Xs), Ys)

The argument filtering Pi contains the following mapping:
qs_2_in_ag2(x1, x2)  =  qs_2_in_ag1(x2)
[]_0  =  []_0
._22(x1, x2)  =  ._21(x2)
0_0  =  0_0
s_11(x1)  =  s_1
qs_2_out_ag2(x1, x2)  =  qs_2_out_ag1(x1)
if_qs_2_in_1_ag4(x1, x2, x3, x4)  =  if_qs_2_in_1_ag2(x3, x4)
part_4_in_aaaa4(x1, x2, x3, x4)  =  part_4_in_aaaa
if_part_4_in_1_aaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_aaaa1(x6)
less_2_in_aa2(x1, x2)  =  less_2_in_aa
less_2_out_aa2(x1, x2)  =  less_2_out_aa2(x1, x2)
if_less_2_in_1_aa3(x1, x2, x3)  =  if_less_2_in_1_aa1(x3)
if_part_4_in_2_aaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_aaaa1(x6)
part_4_in_gaaa4(x1, x2, x3, x4)  =  part_4_in_gaaa1(x1)
if_part_4_in_1_gaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_gaaa2(x1, x6)
less_2_in_ga2(x1, x2)  =  less_2_in_ga1(x1)
less_2_out_ga2(x1, x2)  =  less_2_out_ga1(x2)
if_less_2_in_1_ga3(x1, x2, x3)  =  if_less_2_in_1_ga1(x3)
if_part_4_in_2_gaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_gaaa1(x6)
if_part_4_in_3_gaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_gaaa1(x6)
part_4_out_gaaa4(x1, x2, x3, x4)  =  part_4_out_gaaa3(x2, x3, x4)
part_4_out_aaaa4(x1, x2, x3, x4)  =  part_4_out_aaaa3(x2, x3, x4)
if_part_4_in_3_aaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_aaaa1(x6)
if_qs_2_in_2_ag6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_2_ag4(x2, x3, x5, x6)
qs_2_in_ga2(x1, x2)  =  qs_2_in_ga1(x1)
qs_2_out_ga2(x1, x2)  =  qs_2_out_ga1(x2)
if_qs_2_in_1_ga4(x1, x2, x3, x4)  =  if_qs_2_in_1_ga1(x4)
part_4_in_agaa4(x1, x2, x3, x4)  =  part_4_in_agaa1(x2)
if_part_4_in_1_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_agaa2(x3, x6)
if_part_4_in_2_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_agaa1(x6)
part_4_in_ggaa4(x1, x2, x3, x4)  =  part_4_in_ggaa2(x1, x2)
if_part_4_in_1_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_ggaa3(x1, x3, x6)
if_part_4_in_2_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_ggaa1(x6)
if_part_4_in_3_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_ggaa1(x6)
part_4_out_ggaa4(x1, x2, x3, x4)  =  part_4_out_ggaa2(x3, x4)
part_4_out_agaa4(x1, x2, x3, x4)  =  part_4_out_agaa2(x3, x4)
if_part_4_in_3_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_agaa1(x6)
if_qs_2_in_2_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_2_ga2(x5, x6)
if_qs_2_in_3_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_3_ga2(x5, x6)
if_qs_2_in_4_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_4_ga1(x6)
app_3_in_gga3(x1, x2, x3)  =  app_3_in_gga2(x1, x2)
app_3_out_gga3(x1, x2, x3)  =  app_3_out_gga1(x3)
if_app_3_in_1_gga5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_gga1(x5)
if_qs_2_in_3_ag6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_3_ag4(x2, x3, x5, x6)
if_qs_2_in_4_ag6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_4_ag2(x2, x6)
app_3_in_ggg3(x1, x2, x3)  =  app_3_in_ggg3(x1, x2, x3)
app_3_out_ggg3(x1, x2, x3)  =  app_3_out_ggg
if_app_3_in_1_ggg5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_ggg1(x5)


Pi DP problem:
The TRS P consists of the following rules:

QS_2_IN_AG2(._22(X, Xs), Ys) -> IF_QS_2_IN_1_AG4(X, Xs, Ys, part_4_in_aaaa4(X, Xs, Littles, Bigs))
QS_2_IN_AG2(._22(X, Xs), Ys) -> PART_4_IN_AAAA4(X, Xs, Littles, Bigs)
PART_4_IN_AAAA4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> IF_PART_4_IN_1_AAAA6(X, Y, Xs, Ls, Bs, less_2_in_aa2(X, Y))
PART_4_IN_AAAA4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> LESS_2_IN_AA2(X, Y)
LESS_2_IN_AA2(s_11(X), s_11(Y)) -> IF_LESS_2_IN_1_AA3(X, Y, less_2_in_aa2(X, Y))
LESS_2_IN_AA2(s_11(X), s_11(Y)) -> LESS_2_IN_AA2(X, Y)
IF_PART_4_IN_1_AAAA6(X, Y, Xs, Ls, Bs, less_2_out_aa2(X, Y)) -> IF_PART_4_IN_2_AAAA6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
IF_PART_4_IN_1_AAAA6(X, Y, Xs, Ls, Bs, less_2_out_aa2(X, Y)) -> PART_4_IN_GAAA4(X, Xs, Ls, Bs)
PART_4_IN_GAAA4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> IF_PART_4_IN_1_GAAA6(X, Y, Xs, Ls, Bs, less_2_in_ga2(X, Y))
PART_4_IN_GAAA4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> LESS_2_IN_GA2(X, Y)
LESS_2_IN_GA2(s_11(X), s_11(Y)) -> IF_LESS_2_IN_1_GA3(X, Y, less_2_in_aa2(X, Y))
LESS_2_IN_GA2(s_11(X), s_11(Y)) -> LESS_2_IN_AA2(X, Y)
IF_PART_4_IN_1_GAAA6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> IF_PART_4_IN_2_GAAA6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
IF_PART_4_IN_1_GAAA6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> PART_4_IN_GAAA4(X, Xs, Ls, Bs)
PART_4_IN_GAAA4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> IF_PART_4_IN_3_GAAA6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
PART_4_IN_GAAA4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> PART_4_IN_GAAA4(X, Xs, Ls, Bs)
PART_4_IN_AAAA4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> IF_PART_4_IN_3_AAAA6(X, Y, Xs, Ls, Bs, part_4_in_aaaa4(X, Xs, Ls, Bs))
PART_4_IN_AAAA4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> PART_4_IN_AAAA4(X, Xs, Ls, Bs)
IF_QS_2_IN_1_AG4(X, Xs, Ys, part_4_out_aaaa4(X, Xs, Littles, Bigs)) -> IF_QS_2_IN_2_AG6(X, Xs, Ys, Littles, Bigs, qs_2_in_ga2(Littles, Ls))
IF_QS_2_IN_1_AG4(X, Xs, Ys, part_4_out_aaaa4(X, Xs, Littles, Bigs)) -> QS_2_IN_GA2(Littles, Ls)
QS_2_IN_GA2(._22(X, Xs), Ys) -> IF_QS_2_IN_1_GA4(X, Xs, Ys, part_4_in_agaa4(X, Xs, Littles, Bigs))
QS_2_IN_GA2(._22(X, Xs), Ys) -> PART_4_IN_AGAA4(X, Xs, Littles, Bigs)
PART_4_IN_AGAA4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> IF_PART_4_IN_1_AGAA6(X, Y, Xs, Ls, Bs, less_2_in_aa2(X, Y))
PART_4_IN_AGAA4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> LESS_2_IN_AA2(X, Y)
IF_PART_4_IN_1_AGAA6(X, Y, Xs, Ls, Bs, less_2_out_aa2(X, Y)) -> IF_PART_4_IN_2_AGAA6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
IF_PART_4_IN_1_AGAA6(X, Y, Xs, Ls, Bs, less_2_out_aa2(X, Y)) -> PART_4_IN_GGAA4(X, Xs, Ls, Bs)
PART_4_IN_GGAA4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> IF_PART_4_IN_1_GGAA6(X, Y, Xs, Ls, Bs, less_2_in_ga2(X, Y))
PART_4_IN_GGAA4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> LESS_2_IN_GA2(X, Y)
IF_PART_4_IN_1_GGAA6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> IF_PART_4_IN_2_GGAA6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
IF_PART_4_IN_1_GGAA6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> PART_4_IN_GGAA4(X, Xs, Ls, Bs)
PART_4_IN_GGAA4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> IF_PART_4_IN_3_GGAA6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
PART_4_IN_GGAA4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> PART_4_IN_GGAA4(X, Xs, Ls, Bs)
PART_4_IN_AGAA4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> IF_PART_4_IN_3_AGAA6(X, Y, Xs, Ls, Bs, part_4_in_agaa4(X, Xs, Ls, Bs))
PART_4_IN_AGAA4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> PART_4_IN_AGAA4(X, Xs, Ls, Bs)
IF_QS_2_IN_1_GA4(X, Xs, Ys, part_4_out_agaa4(X, Xs, Littles, Bigs)) -> IF_QS_2_IN_2_GA6(X, Xs, Ys, Littles, Bigs, qs_2_in_ga2(Littles, Ls))
IF_QS_2_IN_1_GA4(X, Xs, Ys, part_4_out_agaa4(X, Xs, Littles, Bigs)) -> QS_2_IN_GA2(Littles, Ls)
IF_QS_2_IN_2_GA6(X, Xs, Ys, Littles, Bigs, qs_2_out_ga2(Littles, Ls)) -> IF_QS_2_IN_3_GA6(X, Xs, Ys, Bigs, Ls, qs_2_in_ga2(Bigs, Bs))
IF_QS_2_IN_2_GA6(X, Xs, Ys, Littles, Bigs, qs_2_out_ga2(Littles, Ls)) -> QS_2_IN_GA2(Bigs, Bs)
IF_QS_2_IN_3_GA6(X, Xs, Ys, Bigs, Ls, qs_2_out_ga2(Bigs, Bs)) -> IF_QS_2_IN_4_GA6(X, Xs, Ys, Ls, Bs, app_3_in_gga3(Ls, ._22(X, Bs), Ys))
IF_QS_2_IN_3_GA6(X, Xs, Ys, Bigs, Ls, qs_2_out_ga2(Bigs, Bs)) -> APP_3_IN_GGA3(Ls, ._22(X, Bs), Ys)
APP_3_IN_GGA3(._22(X, Xs), Ys, ._22(X, Zs)) -> IF_APP_3_IN_1_GGA5(X, Xs, Ys, Zs, app_3_in_gga3(Xs, Ys, Zs))
APP_3_IN_GGA3(._22(X, Xs), Ys, ._22(X, Zs)) -> APP_3_IN_GGA3(Xs, Ys, Zs)
IF_QS_2_IN_2_AG6(X, Xs, Ys, Littles, Bigs, qs_2_out_ga2(Littles, Ls)) -> IF_QS_2_IN_3_AG6(X, Xs, Ys, Bigs, Ls, qs_2_in_ga2(Bigs, Bs))
IF_QS_2_IN_2_AG6(X, Xs, Ys, Littles, Bigs, qs_2_out_ga2(Littles, Ls)) -> QS_2_IN_GA2(Bigs, Bs)
IF_QS_2_IN_3_AG6(X, Xs, Ys, Bigs, Ls, qs_2_out_ga2(Bigs, Bs)) -> IF_QS_2_IN_4_AG6(X, Xs, Ys, Ls, Bs, app_3_in_ggg3(Ls, ._22(X, Bs), Ys))
IF_QS_2_IN_3_AG6(X, Xs, Ys, Bigs, Ls, qs_2_out_ga2(Bigs, Bs)) -> APP_3_IN_GGG3(Ls, ._22(X, Bs), Ys)
APP_3_IN_GGG3(._22(X, Xs), Ys, ._22(X, Zs)) -> IF_APP_3_IN_1_GGG5(X, Xs, Ys, Zs, app_3_in_ggg3(Xs, Ys, Zs))
APP_3_IN_GGG3(._22(X, Xs), Ys, ._22(X, Zs)) -> APP_3_IN_GGG3(Xs, Ys, Zs)

The TRS R consists of the following rules:

qs_2_in_ag2([]_0, []_0) -> qs_2_out_ag2([]_0, []_0)
qs_2_in_ag2(._22(X, Xs), Ys) -> if_qs_2_in_1_ag4(X, Xs, Ys, part_4_in_aaaa4(X, Xs, Littles, Bigs))
part_4_in_aaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_aaaa6(X, Y, Xs, Ls, Bs, less_2_in_aa2(X, Y))
less_2_in_aa2(0_0, s_11(underscore1)) -> less_2_out_aa2(0_0, s_11(underscore1))
less_2_in_aa2(s_11(X), s_11(Y)) -> if_less_2_in_1_aa3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_aa3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_aa2(s_11(X), s_11(Y))
if_part_4_in_1_aaaa6(X, Y, Xs, Ls, Bs, less_2_out_aa2(X, Y)) -> if_part_4_in_2_aaaa6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
part_4_in_gaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_gaaa6(X, Y, Xs, Ls, Bs, less_2_in_ga2(X, Y))
less_2_in_ga2(0_0, s_11(underscore1)) -> less_2_out_ga2(0_0, s_11(underscore1))
less_2_in_ga2(s_11(X), s_11(Y)) -> if_less_2_in_1_ga3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_ga3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_ga2(s_11(X), s_11(Y))
if_part_4_in_1_gaaa6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> if_part_4_in_2_gaaa6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
part_4_in_gaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_gaaa6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
part_4_in_gaaa4(underscore, []_0, []_0, []_0) -> part_4_out_gaaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_gaaa6(X, Y, Xs, Ls, Bs, part_4_out_gaaa4(X, Xs, Ls, Bs)) -> part_4_out_gaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_part_4_in_2_gaaa6(X, Y, Xs, Ls, Bs, part_4_out_gaaa4(X, Xs, Ls, Bs)) -> part_4_out_gaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
if_part_4_in_2_aaaa6(X, Y, Xs, Ls, Bs, part_4_out_gaaa4(X, Xs, Ls, Bs)) -> part_4_out_aaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
part_4_in_aaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_aaaa6(X, Y, Xs, Ls, Bs, part_4_in_aaaa4(X, Xs, Ls, Bs))
part_4_in_aaaa4(underscore, []_0, []_0, []_0) -> part_4_out_aaaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_aaaa6(X, Y, Xs, Ls, Bs, part_4_out_aaaa4(X, Xs, Ls, Bs)) -> part_4_out_aaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_qs_2_in_1_ag4(X, Xs, Ys, part_4_out_aaaa4(X, Xs, Littles, Bigs)) -> if_qs_2_in_2_ag6(X, Xs, Ys, Littles, Bigs, qs_2_in_ga2(Littles, Ls))
qs_2_in_ga2([]_0, []_0) -> qs_2_out_ga2([]_0, []_0)
qs_2_in_ga2(._22(X, Xs), Ys) -> if_qs_2_in_1_ga4(X, Xs, Ys, part_4_in_agaa4(X, Xs, Littles, Bigs))
part_4_in_agaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_agaa6(X, Y, Xs, Ls, Bs, less_2_in_aa2(X, Y))
if_part_4_in_1_agaa6(X, Y, Xs, Ls, Bs, less_2_out_aa2(X, Y)) -> if_part_4_in_2_agaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_ggaa6(X, Y, Xs, Ls, Bs, less_2_in_ga2(X, Y))
if_part_4_in_1_ggaa6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> if_part_4_in_2_ggaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_ggaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(underscore, []_0, []_0, []_0) -> part_4_out_ggaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_ggaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_ggaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_part_4_in_2_ggaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_ggaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
if_part_4_in_2_agaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_agaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
part_4_in_agaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_agaa6(X, Y, Xs, Ls, Bs, part_4_in_agaa4(X, Xs, Ls, Bs))
part_4_in_agaa4(underscore, []_0, []_0, []_0) -> part_4_out_agaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_agaa6(X, Y, Xs, Ls, Bs, part_4_out_agaa4(X, Xs, Ls, Bs)) -> part_4_out_agaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_qs_2_in_1_ga4(X, Xs, Ys, part_4_out_agaa4(X, Xs, Littles, Bigs)) -> if_qs_2_in_2_ga6(X, Xs, Ys, Littles, Bigs, qs_2_in_ga2(Littles, Ls))
if_qs_2_in_2_ga6(X, Xs, Ys, Littles, Bigs, qs_2_out_ga2(Littles, Ls)) -> if_qs_2_in_3_ga6(X, Xs, Ys, Bigs, Ls, qs_2_in_ga2(Bigs, Bs))
if_qs_2_in_3_ga6(X, Xs, Ys, Bigs, Ls, qs_2_out_ga2(Bigs, Bs)) -> if_qs_2_in_4_ga6(X, Xs, Ys, Ls, Bs, app_3_in_gga3(Ls, ._22(X, Bs), Ys))
app_3_in_gga3([]_0, X, X) -> app_3_out_gga3([]_0, X, X)
app_3_in_gga3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_gga5(X, Xs, Ys, Zs, app_3_in_gga3(Xs, Ys, Zs))
if_app_3_in_1_gga5(X, Xs, Ys, Zs, app_3_out_gga3(Xs, Ys, Zs)) -> app_3_out_gga3(._22(X, Xs), Ys, ._22(X, Zs))
if_qs_2_in_4_ga6(X, Xs, Ys, Ls, Bs, app_3_out_gga3(Ls, ._22(X, Bs), Ys)) -> qs_2_out_ga2(._22(X, Xs), Ys)
if_qs_2_in_2_ag6(X, Xs, Ys, Littles, Bigs, qs_2_out_ga2(Littles, Ls)) -> if_qs_2_in_3_ag6(X, Xs, Ys, Bigs, Ls, qs_2_in_ga2(Bigs, Bs))
if_qs_2_in_3_ag6(X, Xs, Ys, Bigs, Ls, qs_2_out_ga2(Bigs, Bs)) -> if_qs_2_in_4_ag6(X, Xs, Ys, Ls, Bs, app_3_in_ggg3(Ls, ._22(X, Bs), Ys))
app_3_in_ggg3([]_0, X, X) -> app_3_out_ggg3([]_0, X, X)
app_3_in_ggg3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_ggg5(X, Xs, Ys, Zs, app_3_in_ggg3(Xs, Ys, Zs))
if_app_3_in_1_ggg5(X, Xs, Ys, Zs, app_3_out_ggg3(Xs, Ys, Zs)) -> app_3_out_ggg3(._22(X, Xs), Ys, ._22(X, Zs))
if_qs_2_in_4_ag6(X, Xs, Ys, Ls, Bs, app_3_out_ggg3(Ls, ._22(X, Bs), Ys)) -> qs_2_out_ag2(._22(X, Xs), Ys)

The argument filtering Pi contains the following mapping:
qs_2_in_ag2(x1, x2)  =  qs_2_in_ag1(x2)
[]_0  =  []_0
._22(x1, x2)  =  ._21(x2)
0_0  =  0_0
s_11(x1)  =  s_1
qs_2_out_ag2(x1, x2)  =  qs_2_out_ag1(x1)
if_qs_2_in_1_ag4(x1, x2, x3, x4)  =  if_qs_2_in_1_ag2(x3, x4)
part_4_in_aaaa4(x1, x2, x3, x4)  =  part_4_in_aaaa
if_part_4_in_1_aaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_aaaa1(x6)
less_2_in_aa2(x1, x2)  =  less_2_in_aa
less_2_out_aa2(x1, x2)  =  less_2_out_aa2(x1, x2)
if_less_2_in_1_aa3(x1, x2, x3)  =  if_less_2_in_1_aa1(x3)
if_part_4_in_2_aaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_aaaa1(x6)
part_4_in_gaaa4(x1, x2, x3, x4)  =  part_4_in_gaaa1(x1)
if_part_4_in_1_gaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_gaaa2(x1, x6)
less_2_in_ga2(x1, x2)  =  less_2_in_ga1(x1)
less_2_out_ga2(x1, x2)  =  less_2_out_ga1(x2)
if_less_2_in_1_ga3(x1, x2, x3)  =  if_less_2_in_1_ga1(x3)
if_part_4_in_2_gaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_gaaa1(x6)
if_part_4_in_3_gaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_gaaa1(x6)
part_4_out_gaaa4(x1, x2, x3, x4)  =  part_4_out_gaaa3(x2, x3, x4)
part_4_out_aaaa4(x1, x2, x3, x4)  =  part_4_out_aaaa3(x2, x3, x4)
if_part_4_in_3_aaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_aaaa1(x6)
if_qs_2_in_2_ag6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_2_ag4(x2, x3, x5, x6)
qs_2_in_ga2(x1, x2)  =  qs_2_in_ga1(x1)
qs_2_out_ga2(x1, x2)  =  qs_2_out_ga1(x2)
if_qs_2_in_1_ga4(x1, x2, x3, x4)  =  if_qs_2_in_1_ga1(x4)
part_4_in_agaa4(x1, x2, x3, x4)  =  part_4_in_agaa1(x2)
if_part_4_in_1_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_agaa2(x3, x6)
if_part_4_in_2_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_agaa1(x6)
part_4_in_ggaa4(x1, x2, x3, x4)  =  part_4_in_ggaa2(x1, x2)
if_part_4_in_1_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_ggaa3(x1, x3, x6)
if_part_4_in_2_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_ggaa1(x6)
if_part_4_in_3_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_ggaa1(x6)
part_4_out_ggaa4(x1, x2, x3, x4)  =  part_4_out_ggaa2(x3, x4)
part_4_out_agaa4(x1, x2, x3, x4)  =  part_4_out_agaa2(x3, x4)
if_part_4_in_3_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_agaa1(x6)
if_qs_2_in_2_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_2_ga2(x5, x6)
if_qs_2_in_3_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_3_ga2(x5, x6)
if_qs_2_in_4_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_4_ga1(x6)
app_3_in_gga3(x1, x2, x3)  =  app_3_in_gga2(x1, x2)
app_3_out_gga3(x1, x2, x3)  =  app_3_out_gga1(x3)
if_app_3_in_1_gga5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_gga1(x5)
if_qs_2_in_3_ag6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_3_ag4(x2, x3, x5, x6)
if_qs_2_in_4_ag6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_4_ag2(x2, x6)
app_3_in_ggg3(x1, x2, x3)  =  app_3_in_ggg3(x1, x2, x3)
app_3_out_ggg3(x1, x2, x3)  =  app_3_out_ggg
if_app_3_in_1_ggg5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_ggg1(x5)
IF_PART_4_IN_1_AAAA6(x1, x2, x3, x4, x5, x6)  =  IF_PART_4_IN_1_AAAA1(x6)
LESS_2_IN_GA2(x1, x2)  =  LESS_2_IN_GA1(x1)
PART_4_IN_AAAA4(x1, x2, x3, x4)  =  PART_4_IN_AAAA
PART_4_IN_GGAA4(x1, x2, x3, x4)  =  PART_4_IN_GGAA2(x1, x2)
IF_PART_4_IN_3_AAAA6(x1, x2, x3, x4, x5, x6)  =  IF_PART_4_IN_3_AAAA1(x6)
APP_3_IN_GGA3(x1, x2, x3)  =  APP_3_IN_GGA2(x1, x2)
IF_PART_4_IN_1_AGAA6(x1, x2, x3, x4, x5, x6)  =  IF_PART_4_IN_1_AGAA2(x3, x6)
QS_2_IN_AG2(x1, x2)  =  QS_2_IN_AG1(x2)
IF_LESS_2_IN_1_GA3(x1, x2, x3)  =  IF_LESS_2_IN_1_GA1(x3)
IF_PART_4_IN_1_GGAA6(x1, x2, x3, x4, x5, x6)  =  IF_PART_4_IN_1_GGAA3(x1, x3, x6)
IF_QS_2_IN_2_GA6(x1, x2, x3, x4, x5, x6)  =  IF_QS_2_IN_2_GA2(x5, x6)
LESS_2_IN_AA2(x1, x2)  =  LESS_2_IN_AA
QS_2_IN_GA2(x1, x2)  =  QS_2_IN_GA1(x1)
IF_QS_2_IN_4_GA6(x1, x2, x3, x4, x5, x6)  =  IF_QS_2_IN_4_GA1(x6)
IF_PART_4_IN_2_AGAA6(x1, x2, x3, x4, x5, x6)  =  IF_PART_4_IN_2_AGAA1(x6)
IF_PART_4_IN_3_GGAA6(x1, x2, x3, x4, x5, x6)  =  IF_PART_4_IN_3_GGAA1(x6)
APP_3_IN_GGG3(x1, x2, x3)  =  APP_3_IN_GGG3(x1, x2, x3)
PART_4_IN_AGAA4(x1, x2, x3, x4)  =  PART_4_IN_AGAA1(x2)
IF_QS_2_IN_3_AG6(x1, x2, x3, x4, x5, x6)  =  IF_QS_2_IN_3_AG4(x2, x3, x5, x6)
IF_QS_2_IN_3_GA6(x1, x2, x3, x4, x5, x6)  =  IF_QS_2_IN_3_GA2(x5, x6)
IF_QS_2_IN_1_GA4(x1, x2, x3, x4)  =  IF_QS_2_IN_1_GA1(x4)
IF_APP_3_IN_1_GGG5(x1, x2, x3, x4, x5)  =  IF_APP_3_IN_1_GGG1(x5)
IF_LESS_2_IN_1_AA3(x1, x2, x3)  =  IF_LESS_2_IN_1_AA1(x3)
PART_4_IN_GAAA4(x1, x2, x3, x4)  =  PART_4_IN_GAAA1(x1)
IF_QS_2_IN_2_AG6(x1, x2, x3, x4, x5, x6)  =  IF_QS_2_IN_2_AG4(x2, x3, x5, x6)
IF_PART_4_IN_1_GAAA6(x1, x2, x3, x4, x5, x6)  =  IF_PART_4_IN_1_GAAA2(x1, x6)
IF_QS_2_IN_4_AG6(x1, x2, x3, x4, x5, x6)  =  IF_QS_2_IN_4_AG2(x2, x6)
IF_APP_3_IN_1_GGA5(x1, x2, x3, x4, x5)  =  IF_APP_3_IN_1_GGA1(x5)
IF_PART_4_IN_3_GAAA6(x1, x2, x3, x4, x5, x6)  =  IF_PART_4_IN_3_GAAA1(x6)
IF_PART_4_IN_2_GGAA6(x1, x2, x3, x4, x5, x6)  =  IF_PART_4_IN_2_GGAA1(x6)
IF_PART_4_IN_3_AGAA6(x1, x2, x3, x4, x5, x6)  =  IF_PART_4_IN_3_AGAA1(x6)
IF_QS_2_IN_1_AG4(x1, x2, x3, x4)  =  IF_QS_2_IN_1_AG2(x3, x4)
IF_PART_4_IN_2_AAAA6(x1, x2, x3, x4, x5, x6)  =  IF_PART_4_IN_2_AAAA1(x6)
IF_PART_4_IN_2_GAAA6(x1, x2, x3, x4, x5, x6)  =  IF_PART_4_IN_2_GAAA1(x6)

We have to consider all (P,R,Pi)-chains

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
PiDP
          ↳ DependencyGraphProof
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

QS_2_IN_AG2(._22(X, Xs), Ys) -> IF_QS_2_IN_1_AG4(X, Xs, Ys, part_4_in_aaaa4(X, Xs, Littles, Bigs))
QS_2_IN_AG2(._22(X, Xs), Ys) -> PART_4_IN_AAAA4(X, Xs, Littles, Bigs)
PART_4_IN_AAAA4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> IF_PART_4_IN_1_AAAA6(X, Y, Xs, Ls, Bs, less_2_in_aa2(X, Y))
PART_4_IN_AAAA4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> LESS_2_IN_AA2(X, Y)
LESS_2_IN_AA2(s_11(X), s_11(Y)) -> IF_LESS_2_IN_1_AA3(X, Y, less_2_in_aa2(X, Y))
LESS_2_IN_AA2(s_11(X), s_11(Y)) -> LESS_2_IN_AA2(X, Y)
IF_PART_4_IN_1_AAAA6(X, Y, Xs, Ls, Bs, less_2_out_aa2(X, Y)) -> IF_PART_4_IN_2_AAAA6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
IF_PART_4_IN_1_AAAA6(X, Y, Xs, Ls, Bs, less_2_out_aa2(X, Y)) -> PART_4_IN_GAAA4(X, Xs, Ls, Bs)
PART_4_IN_GAAA4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> IF_PART_4_IN_1_GAAA6(X, Y, Xs, Ls, Bs, less_2_in_ga2(X, Y))
PART_4_IN_GAAA4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> LESS_2_IN_GA2(X, Y)
LESS_2_IN_GA2(s_11(X), s_11(Y)) -> IF_LESS_2_IN_1_GA3(X, Y, less_2_in_aa2(X, Y))
LESS_2_IN_GA2(s_11(X), s_11(Y)) -> LESS_2_IN_AA2(X, Y)
IF_PART_4_IN_1_GAAA6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> IF_PART_4_IN_2_GAAA6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
IF_PART_4_IN_1_GAAA6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> PART_4_IN_GAAA4(X, Xs, Ls, Bs)
PART_4_IN_GAAA4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> IF_PART_4_IN_3_GAAA6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
PART_4_IN_GAAA4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> PART_4_IN_GAAA4(X, Xs, Ls, Bs)
PART_4_IN_AAAA4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> IF_PART_4_IN_3_AAAA6(X, Y, Xs, Ls, Bs, part_4_in_aaaa4(X, Xs, Ls, Bs))
PART_4_IN_AAAA4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> PART_4_IN_AAAA4(X, Xs, Ls, Bs)
IF_QS_2_IN_1_AG4(X, Xs, Ys, part_4_out_aaaa4(X, Xs, Littles, Bigs)) -> IF_QS_2_IN_2_AG6(X, Xs, Ys, Littles, Bigs, qs_2_in_ga2(Littles, Ls))
IF_QS_2_IN_1_AG4(X, Xs, Ys, part_4_out_aaaa4(X, Xs, Littles, Bigs)) -> QS_2_IN_GA2(Littles, Ls)
QS_2_IN_GA2(._22(X, Xs), Ys) -> IF_QS_2_IN_1_GA4(X, Xs, Ys, part_4_in_agaa4(X, Xs, Littles, Bigs))
QS_2_IN_GA2(._22(X, Xs), Ys) -> PART_4_IN_AGAA4(X, Xs, Littles, Bigs)
PART_4_IN_AGAA4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> IF_PART_4_IN_1_AGAA6(X, Y, Xs, Ls, Bs, less_2_in_aa2(X, Y))
PART_4_IN_AGAA4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> LESS_2_IN_AA2(X, Y)
IF_PART_4_IN_1_AGAA6(X, Y, Xs, Ls, Bs, less_2_out_aa2(X, Y)) -> IF_PART_4_IN_2_AGAA6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
IF_PART_4_IN_1_AGAA6(X, Y, Xs, Ls, Bs, less_2_out_aa2(X, Y)) -> PART_4_IN_GGAA4(X, Xs, Ls, Bs)
PART_4_IN_GGAA4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> IF_PART_4_IN_1_GGAA6(X, Y, Xs, Ls, Bs, less_2_in_ga2(X, Y))
PART_4_IN_GGAA4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> LESS_2_IN_GA2(X, Y)
IF_PART_4_IN_1_GGAA6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> IF_PART_4_IN_2_GGAA6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
IF_PART_4_IN_1_GGAA6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> PART_4_IN_GGAA4(X, Xs, Ls, Bs)
PART_4_IN_GGAA4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> IF_PART_4_IN_3_GGAA6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
PART_4_IN_GGAA4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> PART_4_IN_GGAA4(X, Xs, Ls, Bs)
PART_4_IN_AGAA4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> IF_PART_4_IN_3_AGAA6(X, Y, Xs, Ls, Bs, part_4_in_agaa4(X, Xs, Ls, Bs))
PART_4_IN_AGAA4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> PART_4_IN_AGAA4(X, Xs, Ls, Bs)
IF_QS_2_IN_1_GA4(X, Xs, Ys, part_4_out_agaa4(X, Xs, Littles, Bigs)) -> IF_QS_2_IN_2_GA6(X, Xs, Ys, Littles, Bigs, qs_2_in_ga2(Littles, Ls))
IF_QS_2_IN_1_GA4(X, Xs, Ys, part_4_out_agaa4(X, Xs, Littles, Bigs)) -> QS_2_IN_GA2(Littles, Ls)
IF_QS_2_IN_2_GA6(X, Xs, Ys, Littles, Bigs, qs_2_out_ga2(Littles, Ls)) -> IF_QS_2_IN_3_GA6(X, Xs, Ys, Bigs, Ls, qs_2_in_ga2(Bigs, Bs))
IF_QS_2_IN_2_GA6(X, Xs, Ys, Littles, Bigs, qs_2_out_ga2(Littles, Ls)) -> QS_2_IN_GA2(Bigs, Bs)
IF_QS_2_IN_3_GA6(X, Xs, Ys, Bigs, Ls, qs_2_out_ga2(Bigs, Bs)) -> IF_QS_2_IN_4_GA6(X, Xs, Ys, Ls, Bs, app_3_in_gga3(Ls, ._22(X, Bs), Ys))
IF_QS_2_IN_3_GA6(X, Xs, Ys, Bigs, Ls, qs_2_out_ga2(Bigs, Bs)) -> APP_3_IN_GGA3(Ls, ._22(X, Bs), Ys)
APP_3_IN_GGA3(._22(X, Xs), Ys, ._22(X, Zs)) -> IF_APP_3_IN_1_GGA5(X, Xs, Ys, Zs, app_3_in_gga3(Xs, Ys, Zs))
APP_3_IN_GGA3(._22(X, Xs), Ys, ._22(X, Zs)) -> APP_3_IN_GGA3(Xs, Ys, Zs)
IF_QS_2_IN_2_AG6(X, Xs, Ys, Littles, Bigs, qs_2_out_ga2(Littles, Ls)) -> IF_QS_2_IN_3_AG6(X, Xs, Ys, Bigs, Ls, qs_2_in_ga2(Bigs, Bs))
IF_QS_2_IN_2_AG6(X, Xs, Ys, Littles, Bigs, qs_2_out_ga2(Littles, Ls)) -> QS_2_IN_GA2(Bigs, Bs)
IF_QS_2_IN_3_AG6(X, Xs, Ys, Bigs, Ls, qs_2_out_ga2(Bigs, Bs)) -> IF_QS_2_IN_4_AG6(X, Xs, Ys, Ls, Bs, app_3_in_ggg3(Ls, ._22(X, Bs), Ys))
IF_QS_2_IN_3_AG6(X, Xs, Ys, Bigs, Ls, qs_2_out_ga2(Bigs, Bs)) -> APP_3_IN_GGG3(Ls, ._22(X, Bs), Ys)
APP_3_IN_GGG3(._22(X, Xs), Ys, ._22(X, Zs)) -> IF_APP_3_IN_1_GGG5(X, Xs, Ys, Zs, app_3_in_ggg3(Xs, Ys, Zs))
APP_3_IN_GGG3(._22(X, Xs), Ys, ._22(X, Zs)) -> APP_3_IN_GGG3(Xs, Ys, Zs)

The TRS R consists of the following rules:

qs_2_in_ag2([]_0, []_0) -> qs_2_out_ag2([]_0, []_0)
qs_2_in_ag2(._22(X, Xs), Ys) -> if_qs_2_in_1_ag4(X, Xs, Ys, part_4_in_aaaa4(X, Xs, Littles, Bigs))
part_4_in_aaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_aaaa6(X, Y, Xs, Ls, Bs, less_2_in_aa2(X, Y))
less_2_in_aa2(0_0, s_11(underscore1)) -> less_2_out_aa2(0_0, s_11(underscore1))
less_2_in_aa2(s_11(X), s_11(Y)) -> if_less_2_in_1_aa3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_aa3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_aa2(s_11(X), s_11(Y))
if_part_4_in_1_aaaa6(X, Y, Xs, Ls, Bs, less_2_out_aa2(X, Y)) -> if_part_4_in_2_aaaa6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
part_4_in_gaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_gaaa6(X, Y, Xs, Ls, Bs, less_2_in_ga2(X, Y))
less_2_in_ga2(0_0, s_11(underscore1)) -> less_2_out_ga2(0_0, s_11(underscore1))
less_2_in_ga2(s_11(X), s_11(Y)) -> if_less_2_in_1_ga3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_ga3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_ga2(s_11(X), s_11(Y))
if_part_4_in_1_gaaa6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> if_part_4_in_2_gaaa6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
part_4_in_gaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_gaaa6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
part_4_in_gaaa4(underscore, []_0, []_0, []_0) -> part_4_out_gaaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_gaaa6(X, Y, Xs, Ls, Bs, part_4_out_gaaa4(X, Xs, Ls, Bs)) -> part_4_out_gaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_part_4_in_2_gaaa6(X, Y, Xs, Ls, Bs, part_4_out_gaaa4(X, Xs, Ls, Bs)) -> part_4_out_gaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
if_part_4_in_2_aaaa6(X, Y, Xs, Ls, Bs, part_4_out_gaaa4(X, Xs, Ls, Bs)) -> part_4_out_aaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
part_4_in_aaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_aaaa6(X, Y, Xs, Ls, Bs, part_4_in_aaaa4(X, Xs, Ls, Bs))
part_4_in_aaaa4(underscore, []_0, []_0, []_0) -> part_4_out_aaaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_aaaa6(X, Y, Xs, Ls, Bs, part_4_out_aaaa4(X, Xs, Ls, Bs)) -> part_4_out_aaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_qs_2_in_1_ag4(X, Xs, Ys, part_4_out_aaaa4(X, Xs, Littles, Bigs)) -> if_qs_2_in_2_ag6(X, Xs, Ys, Littles, Bigs, qs_2_in_ga2(Littles, Ls))
qs_2_in_ga2([]_0, []_0) -> qs_2_out_ga2([]_0, []_0)
qs_2_in_ga2(._22(X, Xs), Ys) -> if_qs_2_in_1_ga4(X, Xs, Ys, part_4_in_agaa4(X, Xs, Littles, Bigs))
part_4_in_agaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_agaa6(X, Y, Xs, Ls, Bs, less_2_in_aa2(X, Y))
if_part_4_in_1_agaa6(X, Y, Xs, Ls, Bs, less_2_out_aa2(X, Y)) -> if_part_4_in_2_agaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_ggaa6(X, Y, Xs, Ls, Bs, less_2_in_ga2(X, Y))
if_part_4_in_1_ggaa6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> if_part_4_in_2_ggaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_ggaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(underscore, []_0, []_0, []_0) -> part_4_out_ggaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_ggaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_ggaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_part_4_in_2_ggaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_ggaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
if_part_4_in_2_agaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_agaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
part_4_in_agaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_agaa6(X, Y, Xs, Ls, Bs, part_4_in_agaa4(X, Xs, Ls, Bs))
part_4_in_agaa4(underscore, []_0, []_0, []_0) -> part_4_out_agaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_agaa6(X, Y, Xs, Ls, Bs, part_4_out_agaa4(X, Xs, Ls, Bs)) -> part_4_out_agaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_qs_2_in_1_ga4(X, Xs, Ys, part_4_out_agaa4(X, Xs, Littles, Bigs)) -> if_qs_2_in_2_ga6(X, Xs, Ys, Littles, Bigs, qs_2_in_ga2(Littles, Ls))
if_qs_2_in_2_ga6(X, Xs, Ys, Littles, Bigs, qs_2_out_ga2(Littles, Ls)) -> if_qs_2_in_3_ga6(X, Xs, Ys, Bigs, Ls, qs_2_in_ga2(Bigs, Bs))
if_qs_2_in_3_ga6(X, Xs, Ys, Bigs, Ls, qs_2_out_ga2(Bigs, Bs)) -> if_qs_2_in_4_ga6(X, Xs, Ys, Ls, Bs, app_3_in_gga3(Ls, ._22(X, Bs), Ys))
app_3_in_gga3([]_0, X, X) -> app_3_out_gga3([]_0, X, X)
app_3_in_gga3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_gga5(X, Xs, Ys, Zs, app_3_in_gga3(Xs, Ys, Zs))
if_app_3_in_1_gga5(X, Xs, Ys, Zs, app_3_out_gga3(Xs, Ys, Zs)) -> app_3_out_gga3(._22(X, Xs), Ys, ._22(X, Zs))
if_qs_2_in_4_ga6(X, Xs, Ys, Ls, Bs, app_3_out_gga3(Ls, ._22(X, Bs), Ys)) -> qs_2_out_ga2(._22(X, Xs), Ys)
if_qs_2_in_2_ag6(X, Xs, Ys, Littles, Bigs, qs_2_out_ga2(Littles, Ls)) -> if_qs_2_in_3_ag6(X, Xs, Ys, Bigs, Ls, qs_2_in_ga2(Bigs, Bs))
if_qs_2_in_3_ag6(X, Xs, Ys, Bigs, Ls, qs_2_out_ga2(Bigs, Bs)) -> if_qs_2_in_4_ag6(X, Xs, Ys, Ls, Bs, app_3_in_ggg3(Ls, ._22(X, Bs), Ys))
app_3_in_ggg3([]_0, X, X) -> app_3_out_ggg3([]_0, X, X)
app_3_in_ggg3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_ggg5(X, Xs, Ys, Zs, app_3_in_ggg3(Xs, Ys, Zs))
if_app_3_in_1_ggg5(X, Xs, Ys, Zs, app_3_out_ggg3(Xs, Ys, Zs)) -> app_3_out_ggg3(._22(X, Xs), Ys, ._22(X, Zs))
if_qs_2_in_4_ag6(X, Xs, Ys, Ls, Bs, app_3_out_ggg3(Ls, ._22(X, Bs), Ys)) -> qs_2_out_ag2(._22(X, Xs), Ys)

The argument filtering Pi contains the following mapping:
qs_2_in_ag2(x1, x2)  =  qs_2_in_ag1(x2)
[]_0  =  []_0
._22(x1, x2)  =  ._21(x2)
0_0  =  0_0
s_11(x1)  =  s_1
qs_2_out_ag2(x1, x2)  =  qs_2_out_ag1(x1)
if_qs_2_in_1_ag4(x1, x2, x3, x4)  =  if_qs_2_in_1_ag2(x3, x4)
part_4_in_aaaa4(x1, x2, x3, x4)  =  part_4_in_aaaa
if_part_4_in_1_aaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_aaaa1(x6)
less_2_in_aa2(x1, x2)  =  less_2_in_aa
less_2_out_aa2(x1, x2)  =  less_2_out_aa2(x1, x2)
if_less_2_in_1_aa3(x1, x2, x3)  =  if_less_2_in_1_aa1(x3)
if_part_4_in_2_aaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_aaaa1(x6)
part_4_in_gaaa4(x1, x2, x3, x4)  =  part_4_in_gaaa1(x1)
if_part_4_in_1_gaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_gaaa2(x1, x6)
less_2_in_ga2(x1, x2)  =  less_2_in_ga1(x1)
less_2_out_ga2(x1, x2)  =  less_2_out_ga1(x2)
if_less_2_in_1_ga3(x1, x2, x3)  =  if_less_2_in_1_ga1(x3)
if_part_4_in_2_gaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_gaaa1(x6)
if_part_4_in_3_gaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_gaaa1(x6)
part_4_out_gaaa4(x1, x2, x3, x4)  =  part_4_out_gaaa3(x2, x3, x4)
part_4_out_aaaa4(x1, x2, x3, x4)  =  part_4_out_aaaa3(x2, x3, x4)
if_part_4_in_3_aaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_aaaa1(x6)
if_qs_2_in_2_ag6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_2_ag4(x2, x3, x5, x6)
qs_2_in_ga2(x1, x2)  =  qs_2_in_ga1(x1)
qs_2_out_ga2(x1, x2)  =  qs_2_out_ga1(x2)
if_qs_2_in_1_ga4(x1, x2, x3, x4)  =  if_qs_2_in_1_ga1(x4)
part_4_in_agaa4(x1, x2, x3, x4)  =  part_4_in_agaa1(x2)
if_part_4_in_1_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_agaa2(x3, x6)
if_part_4_in_2_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_agaa1(x6)
part_4_in_ggaa4(x1, x2, x3, x4)  =  part_4_in_ggaa2(x1, x2)
if_part_4_in_1_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_ggaa3(x1, x3, x6)
if_part_4_in_2_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_ggaa1(x6)
if_part_4_in_3_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_ggaa1(x6)
part_4_out_ggaa4(x1, x2, x3, x4)  =  part_4_out_ggaa2(x3, x4)
part_4_out_agaa4(x1, x2, x3, x4)  =  part_4_out_agaa2(x3, x4)
if_part_4_in_3_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_agaa1(x6)
if_qs_2_in_2_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_2_ga2(x5, x6)
if_qs_2_in_3_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_3_ga2(x5, x6)
if_qs_2_in_4_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_4_ga1(x6)
app_3_in_gga3(x1, x2, x3)  =  app_3_in_gga2(x1, x2)
app_3_out_gga3(x1, x2, x3)  =  app_3_out_gga1(x3)
if_app_3_in_1_gga5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_gga1(x5)
if_qs_2_in_3_ag6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_3_ag4(x2, x3, x5, x6)
if_qs_2_in_4_ag6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_4_ag2(x2, x6)
app_3_in_ggg3(x1, x2, x3)  =  app_3_in_ggg3(x1, x2, x3)
app_3_out_ggg3(x1, x2, x3)  =  app_3_out_ggg
if_app_3_in_1_ggg5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_ggg1(x5)
IF_PART_4_IN_1_AAAA6(x1, x2, x3, x4, x5, x6)  =  IF_PART_4_IN_1_AAAA1(x6)
LESS_2_IN_GA2(x1, x2)  =  LESS_2_IN_GA1(x1)
PART_4_IN_AAAA4(x1, x2, x3, x4)  =  PART_4_IN_AAAA
PART_4_IN_GGAA4(x1, x2, x3, x4)  =  PART_4_IN_GGAA2(x1, x2)
IF_PART_4_IN_3_AAAA6(x1, x2, x3, x4, x5, x6)  =  IF_PART_4_IN_3_AAAA1(x6)
APP_3_IN_GGA3(x1, x2, x3)  =  APP_3_IN_GGA2(x1, x2)
IF_PART_4_IN_1_AGAA6(x1, x2, x3, x4, x5, x6)  =  IF_PART_4_IN_1_AGAA2(x3, x6)
QS_2_IN_AG2(x1, x2)  =  QS_2_IN_AG1(x2)
IF_LESS_2_IN_1_GA3(x1, x2, x3)  =  IF_LESS_2_IN_1_GA1(x3)
IF_PART_4_IN_1_GGAA6(x1, x2, x3, x4, x5, x6)  =  IF_PART_4_IN_1_GGAA3(x1, x3, x6)
IF_QS_2_IN_2_GA6(x1, x2, x3, x4, x5, x6)  =  IF_QS_2_IN_2_GA2(x5, x6)
LESS_2_IN_AA2(x1, x2)  =  LESS_2_IN_AA
QS_2_IN_GA2(x1, x2)  =  QS_2_IN_GA1(x1)
IF_QS_2_IN_4_GA6(x1, x2, x3, x4, x5, x6)  =  IF_QS_2_IN_4_GA1(x6)
IF_PART_4_IN_2_AGAA6(x1, x2, x3, x4, x5, x6)  =  IF_PART_4_IN_2_AGAA1(x6)
IF_PART_4_IN_3_GGAA6(x1, x2, x3, x4, x5, x6)  =  IF_PART_4_IN_3_GGAA1(x6)
APP_3_IN_GGG3(x1, x2, x3)  =  APP_3_IN_GGG3(x1, x2, x3)
PART_4_IN_AGAA4(x1, x2, x3, x4)  =  PART_4_IN_AGAA1(x2)
IF_QS_2_IN_3_AG6(x1, x2, x3, x4, x5, x6)  =  IF_QS_2_IN_3_AG4(x2, x3, x5, x6)
IF_QS_2_IN_3_GA6(x1, x2, x3, x4, x5, x6)  =  IF_QS_2_IN_3_GA2(x5, x6)
IF_QS_2_IN_1_GA4(x1, x2, x3, x4)  =  IF_QS_2_IN_1_GA1(x4)
IF_APP_3_IN_1_GGG5(x1, x2, x3, x4, x5)  =  IF_APP_3_IN_1_GGG1(x5)
IF_LESS_2_IN_1_AA3(x1, x2, x3)  =  IF_LESS_2_IN_1_AA1(x3)
PART_4_IN_GAAA4(x1, x2, x3, x4)  =  PART_4_IN_GAAA1(x1)
IF_QS_2_IN_2_AG6(x1, x2, x3, x4, x5, x6)  =  IF_QS_2_IN_2_AG4(x2, x3, x5, x6)
IF_PART_4_IN_1_GAAA6(x1, x2, x3, x4, x5, x6)  =  IF_PART_4_IN_1_GAAA2(x1, x6)
IF_QS_2_IN_4_AG6(x1, x2, x3, x4, x5, x6)  =  IF_QS_2_IN_4_AG2(x2, x6)
IF_APP_3_IN_1_GGA5(x1, x2, x3, x4, x5)  =  IF_APP_3_IN_1_GGA1(x5)
IF_PART_4_IN_3_GAAA6(x1, x2, x3, x4, x5, x6)  =  IF_PART_4_IN_3_GAAA1(x6)
IF_PART_4_IN_2_GGAA6(x1, x2, x3, x4, x5, x6)  =  IF_PART_4_IN_2_GGAA1(x6)
IF_PART_4_IN_3_AGAA6(x1, x2, x3, x4, x5, x6)  =  IF_PART_4_IN_3_AGAA1(x6)
IF_QS_2_IN_1_AG4(x1, x2, x3, x4)  =  IF_QS_2_IN_1_AG2(x3, x4)
IF_PART_4_IN_2_AAAA6(x1, x2, x3, x4, x5, x6)  =  IF_PART_4_IN_2_AAAA1(x6)
IF_PART_4_IN_2_GAAA6(x1, x2, x3, x4, x5, x6)  =  IF_PART_4_IN_2_GAAA1(x6)

We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph contains 8 SCCs with 33 less nodes.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
PiDP
                ↳ UsableRulesProof
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

APP_3_IN_GGG3(._22(X, Xs), Ys, ._22(X, Zs)) -> APP_3_IN_GGG3(Xs, Ys, Zs)

The TRS R consists of the following rules:

qs_2_in_ag2([]_0, []_0) -> qs_2_out_ag2([]_0, []_0)
qs_2_in_ag2(._22(X, Xs), Ys) -> if_qs_2_in_1_ag4(X, Xs, Ys, part_4_in_aaaa4(X, Xs, Littles, Bigs))
part_4_in_aaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_aaaa6(X, Y, Xs, Ls, Bs, less_2_in_aa2(X, Y))
less_2_in_aa2(0_0, s_11(underscore1)) -> less_2_out_aa2(0_0, s_11(underscore1))
less_2_in_aa2(s_11(X), s_11(Y)) -> if_less_2_in_1_aa3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_aa3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_aa2(s_11(X), s_11(Y))
if_part_4_in_1_aaaa6(X, Y, Xs, Ls, Bs, less_2_out_aa2(X, Y)) -> if_part_4_in_2_aaaa6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
part_4_in_gaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_gaaa6(X, Y, Xs, Ls, Bs, less_2_in_ga2(X, Y))
less_2_in_ga2(0_0, s_11(underscore1)) -> less_2_out_ga2(0_0, s_11(underscore1))
less_2_in_ga2(s_11(X), s_11(Y)) -> if_less_2_in_1_ga3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_ga3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_ga2(s_11(X), s_11(Y))
if_part_4_in_1_gaaa6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> if_part_4_in_2_gaaa6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
part_4_in_gaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_gaaa6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
part_4_in_gaaa4(underscore, []_0, []_0, []_0) -> part_4_out_gaaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_gaaa6(X, Y, Xs, Ls, Bs, part_4_out_gaaa4(X, Xs, Ls, Bs)) -> part_4_out_gaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_part_4_in_2_gaaa6(X, Y, Xs, Ls, Bs, part_4_out_gaaa4(X, Xs, Ls, Bs)) -> part_4_out_gaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
if_part_4_in_2_aaaa6(X, Y, Xs, Ls, Bs, part_4_out_gaaa4(X, Xs, Ls, Bs)) -> part_4_out_aaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
part_4_in_aaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_aaaa6(X, Y, Xs, Ls, Bs, part_4_in_aaaa4(X, Xs, Ls, Bs))
part_4_in_aaaa4(underscore, []_0, []_0, []_0) -> part_4_out_aaaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_aaaa6(X, Y, Xs, Ls, Bs, part_4_out_aaaa4(X, Xs, Ls, Bs)) -> part_4_out_aaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_qs_2_in_1_ag4(X, Xs, Ys, part_4_out_aaaa4(X, Xs, Littles, Bigs)) -> if_qs_2_in_2_ag6(X, Xs, Ys, Littles, Bigs, qs_2_in_ga2(Littles, Ls))
qs_2_in_ga2([]_0, []_0) -> qs_2_out_ga2([]_0, []_0)
qs_2_in_ga2(._22(X, Xs), Ys) -> if_qs_2_in_1_ga4(X, Xs, Ys, part_4_in_agaa4(X, Xs, Littles, Bigs))
part_4_in_agaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_agaa6(X, Y, Xs, Ls, Bs, less_2_in_aa2(X, Y))
if_part_4_in_1_agaa6(X, Y, Xs, Ls, Bs, less_2_out_aa2(X, Y)) -> if_part_4_in_2_agaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_ggaa6(X, Y, Xs, Ls, Bs, less_2_in_ga2(X, Y))
if_part_4_in_1_ggaa6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> if_part_4_in_2_ggaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_ggaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(underscore, []_0, []_0, []_0) -> part_4_out_ggaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_ggaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_ggaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_part_4_in_2_ggaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_ggaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
if_part_4_in_2_agaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_agaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
part_4_in_agaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_agaa6(X, Y, Xs, Ls, Bs, part_4_in_agaa4(X, Xs, Ls, Bs))
part_4_in_agaa4(underscore, []_0, []_0, []_0) -> part_4_out_agaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_agaa6(X, Y, Xs, Ls, Bs, part_4_out_agaa4(X, Xs, Ls, Bs)) -> part_4_out_agaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_qs_2_in_1_ga4(X, Xs, Ys, part_4_out_agaa4(X, Xs, Littles, Bigs)) -> if_qs_2_in_2_ga6(X, Xs, Ys, Littles, Bigs, qs_2_in_ga2(Littles, Ls))
if_qs_2_in_2_ga6(X, Xs, Ys, Littles, Bigs, qs_2_out_ga2(Littles, Ls)) -> if_qs_2_in_3_ga6(X, Xs, Ys, Bigs, Ls, qs_2_in_ga2(Bigs, Bs))
if_qs_2_in_3_ga6(X, Xs, Ys, Bigs, Ls, qs_2_out_ga2(Bigs, Bs)) -> if_qs_2_in_4_ga6(X, Xs, Ys, Ls, Bs, app_3_in_gga3(Ls, ._22(X, Bs), Ys))
app_3_in_gga3([]_0, X, X) -> app_3_out_gga3([]_0, X, X)
app_3_in_gga3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_gga5(X, Xs, Ys, Zs, app_3_in_gga3(Xs, Ys, Zs))
if_app_3_in_1_gga5(X, Xs, Ys, Zs, app_3_out_gga3(Xs, Ys, Zs)) -> app_3_out_gga3(._22(X, Xs), Ys, ._22(X, Zs))
if_qs_2_in_4_ga6(X, Xs, Ys, Ls, Bs, app_3_out_gga3(Ls, ._22(X, Bs), Ys)) -> qs_2_out_ga2(._22(X, Xs), Ys)
if_qs_2_in_2_ag6(X, Xs, Ys, Littles, Bigs, qs_2_out_ga2(Littles, Ls)) -> if_qs_2_in_3_ag6(X, Xs, Ys, Bigs, Ls, qs_2_in_ga2(Bigs, Bs))
if_qs_2_in_3_ag6(X, Xs, Ys, Bigs, Ls, qs_2_out_ga2(Bigs, Bs)) -> if_qs_2_in_4_ag6(X, Xs, Ys, Ls, Bs, app_3_in_ggg3(Ls, ._22(X, Bs), Ys))
app_3_in_ggg3([]_0, X, X) -> app_3_out_ggg3([]_0, X, X)
app_3_in_ggg3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_ggg5(X, Xs, Ys, Zs, app_3_in_ggg3(Xs, Ys, Zs))
if_app_3_in_1_ggg5(X, Xs, Ys, Zs, app_3_out_ggg3(Xs, Ys, Zs)) -> app_3_out_ggg3(._22(X, Xs), Ys, ._22(X, Zs))
if_qs_2_in_4_ag6(X, Xs, Ys, Ls, Bs, app_3_out_ggg3(Ls, ._22(X, Bs), Ys)) -> qs_2_out_ag2(._22(X, Xs), Ys)

The argument filtering Pi contains the following mapping:
qs_2_in_ag2(x1, x2)  =  qs_2_in_ag1(x2)
[]_0  =  []_0
._22(x1, x2)  =  ._21(x2)
0_0  =  0_0
s_11(x1)  =  s_1
qs_2_out_ag2(x1, x2)  =  qs_2_out_ag1(x1)
if_qs_2_in_1_ag4(x1, x2, x3, x4)  =  if_qs_2_in_1_ag2(x3, x4)
part_4_in_aaaa4(x1, x2, x3, x4)  =  part_4_in_aaaa
if_part_4_in_1_aaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_aaaa1(x6)
less_2_in_aa2(x1, x2)  =  less_2_in_aa
less_2_out_aa2(x1, x2)  =  less_2_out_aa2(x1, x2)
if_less_2_in_1_aa3(x1, x2, x3)  =  if_less_2_in_1_aa1(x3)
if_part_4_in_2_aaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_aaaa1(x6)
part_4_in_gaaa4(x1, x2, x3, x4)  =  part_4_in_gaaa1(x1)
if_part_4_in_1_gaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_gaaa2(x1, x6)
less_2_in_ga2(x1, x2)  =  less_2_in_ga1(x1)
less_2_out_ga2(x1, x2)  =  less_2_out_ga1(x2)
if_less_2_in_1_ga3(x1, x2, x3)  =  if_less_2_in_1_ga1(x3)
if_part_4_in_2_gaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_gaaa1(x6)
if_part_4_in_3_gaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_gaaa1(x6)
part_4_out_gaaa4(x1, x2, x3, x4)  =  part_4_out_gaaa3(x2, x3, x4)
part_4_out_aaaa4(x1, x2, x3, x4)  =  part_4_out_aaaa3(x2, x3, x4)
if_part_4_in_3_aaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_aaaa1(x6)
if_qs_2_in_2_ag6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_2_ag4(x2, x3, x5, x6)
qs_2_in_ga2(x1, x2)  =  qs_2_in_ga1(x1)
qs_2_out_ga2(x1, x2)  =  qs_2_out_ga1(x2)
if_qs_2_in_1_ga4(x1, x2, x3, x4)  =  if_qs_2_in_1_ga1(x4)
part_4_in_agaa4(x1, x2, x3, x4)  =  part_4_in_agaa1(x2)
if_part_4_in_1_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_agaa2(x3, x6)
if_part_4_in_2_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_agaa1(x6)
part_4_in_ggaa4(x1, x2, x3, x4)  =  part_4_in_ggaa2(x1, x2)
if_part_4_in_1_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_ggaa3(x1, x3, x6)
if_part_4_in_2_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_ggaa1(x6)
if_part_4_in_3_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_ggaa1(x6)
part_4_out_ggaa4(x1, x2, x3, x4)  =  part_4_out_ggaa2(x3, x4)
part_4_out_agaa4(x1, x2, x3, x4)  =  part_4_out_agaa2(x3, x4)
if_part_4_in_3_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_agaa1(x6)
if_qs_2_in_2_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_2_ga2(x5, x6)
if_qs_2_in_3_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_3_ga2(x5, x6)
if_qs_2_in_4_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_4_ga1(x6)
app_3_in_gga3(x1, x2, x3)  =  app_3_in_gga2(x1, x2)
app_3_out_gga3(x1, x2, x3)  =  app_3_out_gga1(x3)
if_app_3_in_1_gga5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_gga1(x5)
if_qs_2_in_3_ag6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_3_ag4(x2, x3, x5, x6)
if_qs_2_in_4_ag6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_4_ag2(x2, x6)
app_3_in_ggg3(x1, x2, x3)  =  app_3_in_ggg3(x1, x2, x3)
app_3_out_ggg3(x1, x2, x3)  =  app_3_out_ggg
if_app_3_in_1_ggg5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_ggg1(x5)
APP_3_IN_GGG3(x1, x2, x3)  =  APP_3_IN_GGG3(x1, x2, x3)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

APP_3_IN_GGG3(._22(X, Xs), Ys, ._22(X, Zs)) -> APP_3_IN_GGG3(Xs, Ys, Zs)

R is empty.
The argument filtering Pi contains the following mapping:
._22(x1, x2)  =  ._21(x2)
APP_3_IN_GGG3(x1, x2, x3)  =  APP_3_IN_GGG3(x1, x2, x3)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
  ↳ PrologToPiTRSProof

Q DP problem:
The TRS P consists of the following rules:

APP_3_IN_GGG3(._21(Xs), Ys, ._21(Zs)) -> APP_3_IN_GGG3(Xs, Ys, Zs)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
By using the subterm criterion together with the size-change analysis we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
PiDP
                ↳ UsableRulesProof
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

APP_3_IN_GGA3(._22(X, Xs), Ys, ._22(X, Zs)) -> APP_3_IN_GGA3(Xs, Ys, Zs)

The TRS R consists of the following rules:

qs_2_in_ag2([]_0, []_0) -> qs_2_out_ag2([]_0, []_0)
qs_2_in_ag2(._22(X, Xs), Ys) -> if_qs_2_in_1_ag4(X, Xs, Ys, part_4_in_aaaa4(X, Xs, Littles, Bigs))
part_4_in_aaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_aaaa6(X, Y, Xs, Ls, Bs, less_2_in_aa2(X, Y))
less_2_in_aa2(0_0, s_11(underscore1)) -> less_2_out_aa2(0_0, s_11(underscore1))
less_2_in_aa2(s_11(X), s_11(Y)) -> if_less_2_in_1_aa3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_aa3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_aa2(s_11(X), s_11(Y))
if_part_4_in_1_aaaa6(X, Y, Xs, Ls, Bs, less_2_out_aa2(X, Y)) -> if_part_4_in_2_aaaa6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
part_4_in_gaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_gaaa6(X, Y, Xs, Ls, Bs, less_2_in_ga2(X, Y))
less_2_in_ga2(0_0, s_11(underscore1)) -> less_2_out_ga2(0_0, s_11(underscore1))
less_2_in_ga2(s_11(X), s_11(Y)) -> if_less_2_in_1_ga3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_ga3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_ga2(s_11(X), s_11(Y))
if_part_4_in_1_gaaa6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> if_part_4_in_2_gaaa6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
part_4_in_gaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_gaaa6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
part_4_in_gaaa4(underscore, []_0, []_0, []_0) -> part_4_out_gaaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_gaaa6(X, Y, Xs, Ls, Bs, part_4_out_gaaa4(X, Xs, Ls, Bs)) -> part_4_out_gaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_part_4_in_2_gaaa6(X, Y, Xs, Ls, Bs, part_4_out_gaaa4(X, Xs, Ls, Bs)) -> part_4_out_gaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
if_part_4_in_2_aaaa6(X, Y, Xs, Ls, Bs, part_4_out_gaaa4(X, Xs, Ls, Bs)) -> part_4_out_aaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
part_4_in_aaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_aaaa6(X, Y, Xs, Ls, Bs, part_4_in_aaaa4(X, Xs, Ls, Bs))
part_4_in_aaaa4(underscore, []_0, []_0, []_0) -> part_4_out_aaaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_aaaa6(X, Y, Xs, Ls, Bs, part_4_out_aaaa4(X, Xs, Ls, Bs)) -> part_4_out_aaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_qs_2_in_1_ag4(X, Xs, Ys, part_4_out_aaaa4(X, Xs, Littles, Bigs)) -> if_qs_2_in_2_ag6(X, Xs, Ys, Littles, Bigs, qs_2_in_ga2(Littles, Ls))
qs_2_in_ga2([]_0, []_0) -> qs_2_out_ga2([]_0, []_0)
qs_2_in_ga2(._22(X, Xs), Ys) -> if_qs_2_in_1_ga4(X, Xs, Ys, part_4_in_agaa4(X, Xs, Littles, Bigs))
part_4_in_agaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_agaa6(X, Y, Xs, Ls, Bs, less_2_in_aa2(X, Y))
if_part_4_in_1_agaa6(X, Y, Xs, Ls, Bs, less_2_out_aa2(X, Y)) -> if_part_4_in_2_agaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_ggaa6(X, Y, Xs, Ls, Bs, less_2_in_ga2(X, Y))
if_part_4_in_1_ggaa6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> if_part_4_in_2_ggaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_ggaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(underscore, []_0, []_0, []_0) -> part_4_out_ggaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_ggaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_ggaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_part_4_in_2_ggaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_ggaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
if_part_4_in_2_agaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_agaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
part_4_in_agaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_agaa6(X, Y, Xs, Ls, Bs, part_4_in_agaa4(X, Xs, Ls, Bs))
part_4_in_agaa4(underscore, []_0, []_0, []_0) -> part_4_out_agaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_agaa6(X, Y, Xs, Ls, Bs, part_4_out_agaa4(X, Xs, Ls, Bs)) -> part_4_out_agaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_qs_2_in_1_ga4(X, Xs, Ys, part_4_out_agaa4(X, Xs, Littles, Bigs)) -> if_qs_2_in_2_ga6(X, Xs, Ys, Littles, Bigs, qs_2_in_ga2(Littles, Ls))
if_qs_2_in_2_ga6(X, Xs, Ys, Littles, Bigs, qs_2_out_ga2(Littles, Ls)) -> if_qs_2_in_3_ga6(X, Xs, Ys, Bigs, Ls, qs_2_in_ga2(Bigs, Bs))
if_qs_2_in_3_ga6(X, Xs, Ys, Bigs, Ls, qs_2_out_ga2(Bigs, Bs)) -> if_qs_2_in_4_ga6(X, Xs, Ys, Ls, Bs, app_3_in_gga3(Ls, ._22(X, Bs), Ys))
app_3_in_gga3([]_0, X, X) -> app_3_out_gga3([]_0, X, X)
app_3_in_gga3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_gga5(X, Xs, Ys, Zs, app_3_in_gga3(Xs, Ys, Zs))
if_app_3_in_1_gga5(X, Xs, Ys, Zs, app_3_out_gga3(Xs, Ys, Zs)) -> app_3_out_gga3(._22(X, Xs), Ys, ._22(X, Zs))
if_qs_2_in_4_ga6(X, Xs, Ys, Ls, Bs, app_3_out_gga3(Ls, ._22(X, Bs), Ys)) -> qs_2_out_ga2(._22(X, Xs), Ys)
if_qs_2_in_2_ag6(X, Xs, Ys, Littles, Bigs, qs_2_out_ga2(Littles, Ls)) -> if_qs_2_in_3_ag6(X, Xs, Ys, Bigs, Ls, qs_2_in_ga2(Bigs, Bs))
if_qs_2_in_3_ag6(X, Xs, Ys, Bigs, Ls, qs_2_out_ga2(Bigs, Bs)) -> if_qs_2_in_4_ag6(X, Xs, Ys, Ls, Bs, app_3_in_ggg3(Ls, ._22(X, Bs), Ys))
app_3_in_ggg3([]_0, X, X) -> app_3_out_ggg3([]_0, X, X)
app_3_in_ggg3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_ggg5(X, Xs, Ys, Zs, app_3_in_ggg3(Xs, Ys, Zs))
if_app_3_in_1_ggg5(X, Xs, Ys, Zs, app_3_out_ggg3(Xs, Ys, Zs)) -> app_3_out_ggg3(._22(X, Xs), Ys, ._22(X, Zs))
if_qs_2_in_4_ag6(X, Xs, Ys, Ls, Bs, app_3_out_ggg3(Ls, ._22(X, Bs), Ys)) -> qs_2_out_ag2(._22(X, Xs), Ys)

The argument filtering Pi contains the following mapping:
qs_2_in_ag2(x1, x2)  =  qs_2_in_ag1(x2)
[]_0  =  []_0
._22(x1, x2)  =  ._21(x2)
0_0  =  0_0
s_11(x1)  =  s_1
qs_2_out_ag2(x1, x2)  =  qs_2_out_ag1(x1)
if_qs_2_in_1_ag4(x1, x2, x3, x4)  =  if_qs_2_in_1_ag2(x3, x4)
part_4_in_aaaa4(x1, x2, x3, x4)  =  part_4_in_aaaa
if_part_4_in_1_aaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_aaaa1(x6)
less_2_in_aa2(x1, x2)  =  less_2_in_aa
less_2_out_aa2(x1, x2)  =  less_2_out_aa2(x1, x2)
if_less_2_in_1_aa3(x1, x2, x3)  =  if_less_2_in_1_aa1(x3)
if_part_4_in_2_aaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_aaaa1(x6)
part_4_in_gaaa4(x1, x2, x3, x4)  =  part_4_in_gaaa1(x1)
if_part_4_in_1_gaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_gaaa2(x1, x6)
less_2_in_ga2(x1, x2)  =  less_2_in_ga1(x1)
less_2_out_ga2(x1, x2)  =  less_2_out_ga1(x2)
if_less_2_in_1_ga3(x1, x2, x3)  =  if_less_2_in_1_ga1(x3)
if_part_4_in_2_gaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_gaaa1(x6)
if_part_4_in_3_gaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_gaaa1(x6)
part_4_out_gaaa4(x1, x2, x3, x4)  =  part_4_out_gaaa3(x2, x3, x4)
part_4_out_aaaa4(x1, x2, x3, x4)  =  part_4_out_aaaa3(x2, x3, x4)
if_part_4_in_3_aaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_aaaa1(x6)
if_qs_2_in_2_ag6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_2_ag4(x2, x3, x5, x6)
qs_2_in_ga2(x1, x2)  =  qs_2_in_ga1(x1)
qs_2_out_ga2(x1, x2)  =  qs_2_out_ga1(x2)
if_qs_2_in_1_ga4(x1, x2, x3, x4)  =  if_qs_2_in_1_ga1(x4)
part_4_in_agaa4(x1, x2, x3, x4)  =  part_4_in_agaa1(x2)
if_part_4_in_1_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_agaa2(x3, x6)
if_part_4_in_2_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_agaa1(x6)
part_4_in_ggaa4(x1, x2, x3, x4)  =  part_4_in_ggaa2(x1, x2)
if_part_4_in_1_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_ggaa3(x1, x3, x6)
if_part_4_in_2_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_ggaa1(x6)
if_part_4_in_3_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_ggaa1(x6)
part_4_out_ggaa4(x1, x2, x3, x4)  =  part_4_out_ggaa2(x3, x4)
part_4_out_agaa4(x1, x2, x3, x4)  =  part_4_out_agaa2(x3, x4)
if_part_4_in_3_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_agaa1(x6)
if_qs_2_in_2_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_2_ga2(x5, x6)
if_qs_2_in_3_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_3_ga2(x5, x6)
if_qs_2_in_4_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_4_ga1(x6)
app_3_in_gga3(x1, x2, x3)  =  app_3_in_gga2(x1, x2)
app_3_out_gga3(x1, x2, x3)  =  app_3_out_gga1(x3)
if_app_3_in_1_gga5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_gga1(x5)
if_qs_2_in_3_ag6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_3_ag4(x2, x3, x5, x6)
if_qs_2_in_4_ag6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_4_ag2(x2, x6)
app_3_in_ggg3(x1, x2, x3)  =  app_3_in_ggg3(x1, x2, x3)
app_3_out_ggg3(x1, x2, x3)  =  app_3_out_ggg
if_app_3_in_1_ggg5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_ggg1(x5)
APP_3_IN_GGA3(x1, x2, x3)  =  APP_3_IN_GGA2(x1, x2)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

APP_3_IN_GGA3(._22(X, Xs), Ys, ._22(X, Zs)) -> APP_3_IN_GGA3(Xs, Ys, Zs)

R is empty.
The argument filtering Pi contains the following mapping:
._22(x1, x2)  =  ._21(x2)
APP_3_IN_GGA3(x1, x2, x3)  =  APP_3_IN_GGA2(x1, x2)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
  ↳ PrologToPiTRSProof

Q DP problem:
The TRS P consists of the following rules:

APP_3_IN_GGA2(._21(Xs), Ys) -> APP_3_IN_GGA2(Xs, Ys)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
By using the subterm criterion together with the size-change analysis we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
PiDP
                ↳ UsableRulesProof
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

LESS_2_IN_AA2(s_11(X), s_11(Y)) -> LESS_2_IN_AA2(X, Y)

The TRS R consists of the following rules:

qs_2_in_ag2([]_0, []_0) -> qs_2_out_ag2([]_0, []_0)
qs_2_in_ag2(._22(X, Xs), Ys) -> if_qs_2_in_1_ag4(X, Xs, Ys, part_4_in_aaaa4(X, Xs, Littles, Bigs))
part_4_in_aaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_aaaa6(X, Y, Xs, Ls, Bs, less_2_in_aa2(X, Y))
less_2_in_aa2(0_0, s_11(underscore1)) -> less_2_out_aa2(0_0, s_11(underscore1))
less_2_in_aa2(s_11(X), s_11(Y)) -> if_less_2_in_1_aa3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_aa3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_aa2(s_11(X), s_11(Y))
if_part_4_in_1_aaaa6(X, Y, Xs, Ls, Bs, less_2_out_aa2(X, Y)) -> if_part_4_in_2_aaaa6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
part_4_in_gaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_gaaa6(X, Y, Xs, Ls, Bs, less_2_in_ga2(X, Y))
less_2_in_ga2(0_0, s_11(underscore1)) -> less_2_out_ga2(0_0, s_11(underscore1))
less_2_in_ga2(s_11(X), s_11(Y)) -> if_less_2_in_1_ga3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_ga3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_ga2(s_11(X), s_11(Y))
if_part_4_in_1_gaaa6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> if_part_4_in_2_gaaa6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
part_4_in_gaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_gaaa6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
part_4_in_gaaa4(underscore, []_0, []_0, []_0) -> part_4_out_gaaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_gaaa6(X, Y, Xs, Ls, Bs, part_4_out_gaaa4(X, Xs, Ls, Bs)) -> part_4_out_gaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_part_4_in_2_gaaa6(X, Y, Xs, Ls, Bs, part_4_out_gaaa4(X, Xs, Ls, Bs)) -> part_4_out_gaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
if_part_4_in_2_aaaa6(X, Y, Xs, Ls, Bs, part_4_out_gaaa4(X, Xs, Ls, Bs)) -> part_4_out_aaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
part_4_in_aaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_aaaa6(X, Y, Xs, Ls, Bs, part_4_in_aaaa4(X, Xs, Ls, Bs))
part_4_in_aaaa4(underscore, []_0, []_0, []_0) -> part_4_out_aaaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_aaaa6(X, Y, Xs, Ls, Bs, part_4_out_aaaa4(X, Xs, Ls, Bs)) -> part_4_out_aaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_qs_2_in_1_ag4(X, Xs, Ys, part_4_out_aaaa4(X, Xs, Littles, Bigs)) -> if_qs_2_in_2_ag6(X, Xs, Ys, Littles, Bigs, qs_2_in_ga2(Littles, Ls))
qs_2_in_ga2([]_0, []_0) -> qs_2_out_ga2([]_0, []_0)
qs_2_in_ga2(._22(X, Xs), Ys) -> if_qs_2_in_1_ga4(X, Xs, Ys, part_4_in_agaa4(X, Xs, Littles, Bigs))
part_4_in_agaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_agaa6(X, Y, Xs, Ls, Bs, less_2_in_aa2(X, Y))
if_part_4_in_1_agaa6(X, Y, Xs, Ls, Bs, less_2_out_aa2(X, Y)) -> if_part_4_in_2_agaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_ggaa6(X, Y, Xs, Ls, Bs, less_2_in_ga2(X, Y))
if_part_4_in_1_ggaa6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> if_part_4_in_2_ggaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_ggaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(underscore, []_0, []_0, []_0) -> part_4_out_ggaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_ggaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_ggaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_part_4_in_2_ggaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_ggaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
if_part_4_in_2_agaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_agaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
part_4_in_agaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_agaa6(X, Y, Xs, Ls, Bs, part_4_in_agaa4(X, Xs, Ls, Bs))
part_4_in_agaa4(underscore, []_0, []_0, []_0) -> part_4_out_agaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_agaa6(X, Y, Xs, Ls, Bs, part_4_out_agaa4(X, Xs, Ls, Bs)) -> part_4_out_agaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_qs_2_in_1_ga4(X, Xs, Ys, part_4_out_agaa4(X, Xs, Littles, Bigs)) -> if_qs_2_in_2_ga6(X, Xs, Ys, Littles, Bigs, qs_2_in_ga2(Littles, Ls))
if_qs_2_in_2_ga6(X, Xs, Ys, Littles, Bigs, qs_2_out_ga2(Littles, Ls)) -> if_qs_2_in_3_ga6(X, Xs, Ys, Bigs, Ls, qs_2_in_ga2(Bigs, Bs))
if_qs_2_in_3_ga6(X, Xs, Ys, Bigs, Ls, qs_2_out_ga2(Bigs, Bs)) -> if_qs_2_in_4_ga6(X, Xs, Ys, Ls, Bs, app_3_in_gga3(Ls, ._22(X, Bs), Ys))
app_3_in_gga3([]_0, X, X) -> app_3_out_gga3([]_0, X, X)
app_3_in_gga3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_gga5(X, Xs, Ys, Zs, app_3_in_gga3(Xs, Ys, Zs))
if_app_3_in_1_gga5(X, Xs, Ys, Zs, app_3_out_gga3(Xs, Ys, Zs)) -> app_3_out_gga3(._22(X, Xs), Ys, ._22(X, Zs))
if_qs_2_in_4_ga6(X, Xs, Ys, Ls, Bs, app_3_out_gga3(Ls, ._22(X, Bs), Ys)) -> qs_2_out_ga2(._22(X, Xs), Ys)
if_qs_2_in_2_ag6(X, Xs, Ys, Littles, Bigs, qs_2_out_ga2(Littles, Ls)) -> if_qs_2_in_3_ag6(X, Xs, Ys, Bigs, Ls, qs_2_in_ga2(Bigs, Bs))
if_qs_2_in_3_ag6(X, Xs, Ys, Bigs, Ls, qs_2_out_ga2(Bigs, Bs)) -> if_qs_2_in_4_ag6(X, Xs, Ys, Ls, Bs, app_3_in_ggg3(Ls, ._22(X, Bs), Ys))
app_3_in_ggg3([]_0, X, X) -> app_3_out_ggg3([]_0, X, X)
app_3_in_ggg3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_ggg5(X, Xs, Ys, Zs, app_3_in_ggg3(Xs, Ys, Zs))
if_app_3_in_1_ggg5(X, Xs, Ys, Zs, app_3_out_ggg3(Xs, Ys, Zs)) -> app_3_out_ggg3(._22(X, Xs), Ys, ._22(X, Zs))
if_qs_2_in_4_ag6(X, Xs, Ys, Ls, Bs, app_3_out_ggg3(Ls, ._22(X, Bs), Ys)) -> qs_2_out_ag2(._22(X, Xs), Ys)

The argument filtering Pi contains the following mapping:
qs_2_in_ag2(x1, x2)  =  qs_2_in_ag1(x2)
[]_0  =  []_0
._22(x1, x2)  =  ._21(x2)
0_0  =  0_0
s_11(x1)  =  s_1
qs_2_out_ag2(x1, x2)  =  qs_2_out_ag1(x1)
if_qs_2_in_1_ag4(x1, x2, x3, x4)  =  if_qs_2_in_1_ag2(x3, x4)
part_4_in_aaaa4(x1, x2, x3, x4)  =  part_4_in_aaaa
if_part_4_in_1_aaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_aaaa1(x6)
less_2_in_aa2(x1, x2)  =  less_2_in_aa
less_2_out_aa2(x1, x2)  =  less_2_out_aa2(x1, x2)
if_less_2_in_1_aa3(x1, x2, x3)  =  if_less_2_in_1_aa1(x3)
if_part_4_in_2_aaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_aaaa1(x6)
part_4_in_gaaa4(x1, x2, x3, x4)  =  part_4_in_gaaa1(x1)
if_part_4_in_1_gaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_gaaa2(x1, x6)
less_2_in_ga2(x1, x2)  =  less_2_in_ga1(x1)
less_2_out_ga2(x1, x2)  =  less_2_out_ga1(x2)
if_less_2_in_1_ga3(x1, x2, x3)  =  if_less_2_in_1_ga1(x3)
if_part_4_in_2_gaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_gaaa1(x6)
if_part_4_in_3_gaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_gaaa1(x6)
part_4_out_gaaa4(x1, x2, x3, x4)  =  part_4_out_gaaa3(x2, x3, x4)
part_4_out_aaaa4(x1, x2, x3, x4)  =  part_4_out_aaaa3(x2, x3, x4)
if_part_4_in_3_aaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_aaaa1(x6)
if_qs_2_in_2_ag6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_2_ag4(x2, x3, x5, x6)
qs_2_in_ga2(x1, x2)  =  qs_2_in_ga1(x1)
qs_2_out_ga2(x1, x2)  =  qs_2_out_ga1(x2)
if_qs_2_in_1_ga4(x1, x2, x3, x4)  =  if_qs_2_in_1_ga1(x4)
part_4_in_agaa4(x1, x2, x3, x4)  =  part_4_in_agaa1(x2)
if_part_4_in_1_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_agaa2(x3, x6)
if_part_4_in_2_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_agaa1(x6)
part_4_in_ggaa4(x1, x2, x3, x4)  =  part_4_in_ggaa2(x1, x2)
if_part_4_in_1_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_ggaa3(x1, x3, x6)
if_part_4_in_2_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_ggaa1(x6)
if_part_4_in_3_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_ggaa1(x6)
part_4_out_ggaa4(x1, x2, x3, x4)  =  part_4_out_ggaa2(x3, x4)
part_4_out_agaa4(x1, x2, x3, x4)  =  part_4_out_agaa2(x3, x4)
if_part_4_in_3_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_agaa1(x6)
if_qs_2_in_2_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_2_ga2(x5, x6)
if_qs_2_in_3_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_3_ga2(x5, x6)
if_qs_2_in_4_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_4_ga1(x6)
app_3_in_gga3(x1, x2, x3)  =  app_3_in_gga2(x1, x2)
app_3_out_gga3(x1, x2, x3)  =  app_3_out_gga1(x3)
if_app_3_in_1_gga5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_gga1(x5)
if_qs_2_in_3_ag6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_3_ag4(x2, x3, x5, x6)
if_qs_2_in_4_ag6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_4_ag2(x2, x6)
app_3_in_ggg3(x1, x2, x3)  =  app_3_in_ggg3(x1, x2, x3)
app_3_out_ggg3(x1, x2, x3)  =  app_3_out_ggg
if_app_3_in_1_ggg5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_ggg1(x5)
LESS_2_IN_AA2(x1, x2)  =  LESS_2_IN_AA

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

LESS_2_IN_AA2(s_11(X), s_11(Y)) -> LESS_2_IN_AA2(X, Y)

R is empty.
The argument filtering Pi contains the following mapping:
s_11(x1)  =  s_1
LESS_2_IN_AA2(x1, x2)  =  LESS_2_IN_AA

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
  ↳ PrologToPiTRSProof

Q DP problem:
The TRS P consists of the following rules:

LESS_2_IN_AA -> LESS_2_IN_AA

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
PiDP
                ↳ UsableRulesProof
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

PART_4_IN_GGAA4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> PART_4_IN_GGAA4(X, Xs, Ls, Bs)
IF_PART_4_IN_1_GGAA6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> PART_4_IN_GGAA4(X, Xs, Ls, Bs)
PART_4_IN_GGAA4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> IF_PART_4_IN_1_GGAA6(X, Y, Xs, Ls, Bs, less_2_in_ga2(X, Y))

The TRS R consists of the following rules:

qs_2_in_ag2([]_0, []_0) -> qs_2_out_ag2([]_0, []_0)
qs_2_in_ag2(._22(X, Xs), Ys) -> if_qs_2_in_1_ag4(X, Xs, Ys, part_4_in_aaaa4(X, Xs, Littles, Bigs))
part_4_in_aaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_aaaa6(X, Y, Xs, Ls, Bs, less_2_in_aa2(X, Y))
less_2_in_aa2(0_0, s_11(underscore1)) -> less_2_out_aa2(0_0, s_11(underscore1))
less_2_in_aa2(s_11(X), s_11(Y)) -> if_less_2_in_1_aa3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_aa3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_aa2(s_11(X), s_11(Y))
if_part_4_in_1_aaaa6(X, Y, Xs, Ls, Bs, less_2_out_aa2(X, Y)) -> if_part_4_in_2_aaaa6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
part_4_in_gaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_gaaa6(X, Y, Xs, Ls, Bs, less_2_in_ga2(X, Y))
less_2_in_ga2(0_0, s_11(underscore1)) -> less_2_out_ga2(0_0, s_11(underscore1))
less_2_in_ga2(s_11(X), s_11(Y)) -> if_less_2_in_1_ga3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_ga3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_ga2(s_11(X), s_11(Y))
if_part_4_in_1_gaaa6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> if_part_4_in_2_gaaa6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
part_4_in_gaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_gaaa6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
part_4_in_gaaa4(underscore, []_0, []_0, []_0) -> part_4_out_gaaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_gaaa6(X, Y, Xs, Ls, Bs, part_4_out_gaaa4(X, Xs, Ls, Bs)) -> part_4_out_gaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_part_4_in_2_gaaa6(X, Y, Xs, Ls, Bs, part_4_out_gaaa4(X, Xs, Ls, Bs)) -> part_4_out_gaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
if_part_4_in_2_aaaa6(X, Y, Xs, Ls, Bs, part_4_out_gaaa4(X, Xs, Ls, Bs)) -> part_4_out_aaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
part_4_in_aaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_aaaa6(X, Y, Xs, Ls, Bs, part_4_in_aaaa4(X, Xs, Ls, Bs))
part_4_in_aaaa4(underscore, []_0, []_0, []_0) -> part_4_out_aaaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_aaaa6(X, Y, Xs, Ls, Bs, part_4_out_aaaa4(X, Xs, Ls, Bs)) -> part_4_out_aaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_qs_2_in_1_ag4(X, Xs, Ys, part_4_out_aaaa4(X, Xs, Littles, Bigs)) -> if_qs_2_in_2_ag6(X, Xs, Ys, Littles, Bigs, qs_2_in_ga2(Littles, Ls))
qs_2_in_ga2([]_0, []_0) -> qs_2_out_ga2([]_0, []_0)
qs_2_in_ga2(._22(X, Xs), Ys) -> if_qs_2_in_1_ga4(X, Xs, Ys, part_4_in_agaa4(X, Xs, Littles, Bigs))
part_4_in_agaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_agaa6(X, Y, Xs, Ls, Bs, less_2_in_aa2(X, Y))
if_part_4_in_1_agaa6(X, Y, Xs, Ls, Bs, less_2_out_aa2(X, Y)) -> if_part_4_in_2_agaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_ggaa6(X, Y, Xs, Ls, Bs, less_2_in_ga2(X, Y))
if_part_4_in_1_ggaa6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> if_part_4_in_2_ggaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_ggaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(underscore, []_0, []_0, []_0) -> part_4_out_ggaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_ggaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_ggaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_part_4_in_2_ggaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_ggaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
if_part_4_in_2_agaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_agaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
part_4_in_agaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_agaa6(X, Y, Xs, Ls, Bs, part_4_in_agaa4(X, Xs, Ls, Bs))
part_4_in_agaa4(underscore, []_0, []_0, []_0) -> part_4_out_agaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_agaa6(X, Y, Xs, Ls, Bs, part_4_out_agaa4(X, Xs, Ls, Bs)) -> part_4_out_agaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_qs_2_in_1_ga4(X, Xs, Ys, part_4_out_agaa4(X, Xs, Littles, Bigs)) -> if_qs_2_in_2_ga6(X, Xs, Ys, Littles, Bigs, qs_2_in_ga2(Littles, Ls))
if_qs_2_in_2_ga6(X, Xs, Ys, Littles, Bigs, qs_2_out_ga2(Littles, Ls)) -> if_qs_2_in_3_ga6(X, Xs, Ys, Bigs, Ls, qs_2_in_ga2(Bigs, Bs))
if_qs_2_in_3_ga6(X, Xs, Ys, Bigs, Ls, qs_2_out_ga2(Bigs, Bs)) -> if_qs_2_in_4_ga6(X, Xs, Ys, Ls, Bs, app_3_in_gga3(Ls, ._22(X, Bs), Ys))
app_3_in_gga3([]_0, X, X) -> app_3_out_gga3([]_0, X, X)
app_3_in_gga3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_gga5(X, Xs, Ys, Zs, app_3_in_gga3(Xs, Ys, Zs))
if_app_3_in_1_gga5(X, Xs, Ys, Zs, app_3_out_gga3(Xs, Ys, Zs)) -> app_3_out_gga3(._22(X, Xs), Ys, ._22(X, Zs))
if_qs_2_in_4_ga6(X, Xs, Ys, Ls, Bs, app_3_out_gga3(Ls, ._22(X, Bs), Ys)) -> qs_2_out_ga2(._22(X, Xs), Ys)
if_qs_2_in_2_ag6(X, Xs, Ys, Littles, Bigs, qs_2_out_ga2(Littles, Ls)) -> if_qs_2_in_3_ag6(X, Xs, Ys, Bigs, Ls, qs_2_in_ga2(Bigs, Bs))
if_qs_2_in_3_ag6(X, Xs, Ys, Bigs, Ls, qs_2_out_ga2(Bigs, Bs)) -> if_qs_2_in_4_ag6(X, Xs, Ys, Ls, Bs, app_3_in_ggg3(Ls, ._22(X, Bs), Ys))
app_3_in_ggg3([]_0, X, X) -> app_3_out_ggg3([]_0, X, X)
app_3_in_ggg3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_ggg5(X, Xs, Ys, Zs, app_3_in_ggg3(Xs, Ys, Zs))
if_app_3_in_1_ggg5(X, Xs, Ys, Zs, app_3_out_ggg3(Xs, Ys, Zs)) -> app_3_out_ggg3(._22(X, Xs), Ys, ._22(X, Zs))
if_qs_2_in_4_ag6(X, Xs, Ys, Ls, Bs, app_3_out_ggg3(Ls, ._22(X, Bs), Ys)) -> qs_2_out_ag2(._22(X, Xs), Ys)

The argument filtering Pi contains the following mapping:
qs_2_in_ag2(x1, x2)  =  qs_2_in_ag1(x2)
[]_0  =  []_0
._22(x1, x2)  =  ._21(x2)
0_0  =  0_0
s_11(x1)  =  s_1
qs_2_out_ag2(x1, x2)  =  qs_2_out_ag1(x1)
if_qs_2_in_1_ag4(x1, x2, x3, x4)  =  if_qs_2_in_1_ag2(x3, x4)
part_4_in_aaaa4(x1, x2, x3, x4)  =  part_4_in_aaaa
if_part_4_in_1_aaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_aaaa1(x6)
less_2_in_aa2(x1, x2)  =  less_2_in_aa
less_2_out_aa2(x1, x2)  =  less_2_out_aa2(x1, x2)
if_less_2_in_1_aa3(x1, x2, x3)  =  if_less_2_in_1_aa1(x3)
if_part_4_in_2_aaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_aaaa1(x6)
part_4_in_gaaa4(x1, x2, x3, x4)  =  part_4_in_gaaa1(x1)
if_part_4_in_1_gaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_gaaa2(x1, x6)
less_2_in_ga2(x1, x2)  =  less_2_in_ga1(x1)
less_2_out_ga2(x1, x2)  =  less_2_out_ga1(x2)
if_less_2_in_1_ga3(x1, x2, x3)  =  if_less_2_in_1_ga1(x3)
if_part_4_in_2_gaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_gaaa1(x6)
if_part_4_in_3_gaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_gaaa1(x6)
part_4_out_gaaa4(x1, x2, x3, x4)  =  part_4_out_gaaa3(x2, x3, x4)
part_4_out_aaaa4(x1, x2, x3, x4)  =  part_4_out_aaaa3(x2, x3, x4)
if_part_4_in_3_aaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_aaaa1(x6)
if_qs_2_in_2_ag6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_2_ag4(x2, x3, x5, x6)
qs_2_in_ga2(x1, x2)  =  qs_2_in_ga1(x1)
qs_2_out_ga2(x1, x2)  =  qs_2_out_ga1(x2)
if_qs_2_in_1_ga4(x1, x2, x3, x4)  =  if_qs_2_in_1_ga1(x4)
part_4_in_agaa4(x1, x2, x3, x4)  =  part_4_in_agaa1(x2)
if_part_4_in_1_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_agaa2(x3, x6)
if_part_4_in_2_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_agaa1(x6)
part_4_in_ggaa4(x1, x2, x3, x4)  =  part_4_in_ggaa2(x1, x2)
if_part_4_in_1_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_ggaa3(x1, x3, x6)
if_part_4_in_2_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_ggaa1(x6)
if_part_4_in_3_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_ggaa1(x6)
part_4_out_ggaa4(x1, x2, x3, x4)  =  part_4_out_ggaa2(x3, x4)
part_4_out_agaa4(x1, x2, x3, x4)  =  part_4_out_agaa2(x3, x4)
if_part_4_in_3_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_agaa1(x6)
if_qs_2_in_2_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_2_ga2(x5, x6)
if_qs_2_in_3_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_3_ga2(x5, x6)
if_qs_2_in_4_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_4_ga1(x6)
app_3_in_gga3(x1, x2, x3)  =  app_3_in_gga2(x1, x2)
app_3_out_gga3(x1, x2, x3)  =  app_3_out_gga1(x3)
if_app_3_in_1_gga5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_gga1(x5)
if_qs_2_in_3_ag6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_3_ag4(x2, x3, x5, x6)
if_qs_2_in_4_ag6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_4_ag2(x2, x6)
app_3_in_ggg3(x1, x2, x3)  =  app_3_in_ggg3(x1, x2, x3)
app_3_out_ggg3(x1, x2, x3)  =  app_3_out_ggg
if_app_3_in_1_ggg5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_ggg1(x5)
PART_4_IN_GGAA4(x1, x2, x3, x4)  =  PART_4_IN_GGAA2(x1, x2)
IF_PART_4_IN_1_GGAA6(x1, x2, x3, x4, x5, x6)  =  IF_PART_4_IN_1_GGAA3(x1, x3, x6)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

PART_4_IN_GGAA4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> PART_4_IN_GGAA4(X, Xs, Ls, Bs)
IF_PART_4_IN_1_GGAA6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> PART_4_IN_GGAA4(X, Xs, Ls, Bs)
PART_4_IN_GGAA4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> IF_PART_4_IN_1_GGAA6(X, Y, Xs, Ls, Bs, less_2_in_ga2(X, Y))

The TRS R consists of the following rules:

less_2_in_ga2(0_0, s_11(underscore1)) -> less_2_out_ga2(0_0, s_11(underscore1))
less_2_in_ga2(s_11(X), s_11(Y)) -> if_less_2_in_1_ga3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_ga3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_ga2(s_11(X), s_11(Y))
less_2_in_aa2(0_0, s_11(underscore1)) -> less_2_out_aa2(0_0, s_11(underscore1))
less_2_in_aa2(s_11(X), s_11(Y)) -> if_less_2_in_1_aa3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_aa3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_aa2(s_11(X), s_11(Y))

The argument filtering Pi contains the following mapping:
._22(x1, x2)  =  ._21(x2)
0_0  =  0_0
s_11(x1)  =  s_1
less_2_in_aa2(x1, x2)  =  less_2_in_aa
less_2_out_aa2(x1, x2)  =  less_2_out_aa2(x1, x2)
if_less_2_in_1_aa3(x1, x2, x3)  =  if_less_2_in_1_aa1(x3)
less_2_in_ga2(x1, x2)  =  less_2_in_ga1(x1)
less_2_out_ga2(x1, x2)  =  less_2_out_ga1(x2)
if_less_2_in_1_ga3(x1, x2, x3)  =  if_less_2_in_1_ga1(x3)
PART_4_IN_GGAA4(x1, x2, x3, x4)  =  PART_4_IN_GGAA2(x1, x2)
IF_PART_4_IN_1_GGAA6(x1, x2, x3, x4, x5, x6)  =  IF_PART_4_IN_1_GGAA3(x1, x3, x6)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
  ↳ PrologToPiTRSProof

Q DP problem:
The TRS P consists of the following rules:

PART_4_IN_GGAA2(X, ._21(Xs)) -> PART_4_IN_GGAA2(X, Xs)
IF_PART_4_IN_1_GGAA3(X, Xs, less_2_out_ga1(Y)) -> PART_4_IN_GGAA2(X, Xs)
PART_4_IN_GGAA2(X, ._21(Xs)) -> IF_PART_4_IN_1_GGAA3(X, Xs, less_2_in_ga1(X))

The TRS R consists of the following rules:

less_2_in_ga1(0_0) -> less_2_out_ga1(s_1)
less_2_in_ga1(s_1) -> if_less_2_in_1_ga1(less_2_in_aa)
if_less_2_in_1_ga1(less_2_out_aa2(X, Y)) -> less_2_out_ga1(s_1)
less_2_in_aa -> less_2_out_aa2(0_0, s_1)
less_2_in_aa -> if_less_2_in_1_aa1(less_2_in_aa)
if_less_2_in_1_aa1(less_2_out_aa2(X, Y)) -> less_2_out_aa2(s_1, s_1)

The set Q consists of the following terms:

less_2_in_ga1(x0)
if_less_2_in_1_ga1(x0)
less_2_in_aa
if_less_2_in_1_aa1(x0)

We have to consider all (P,Q,R)-chains.
By using the subterm criterion together with the size-change analysis we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
PiDP
                ↳ UsableRulesProof
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

PART_4_IN_AGAA4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> PART_4_IN_AGAA4(X, Xs, Ls, Bs)

The TRS R consists of the following rules:

qs_2_in_ag2([]_0, []_0) -> qs_2_out_ag2([]_0, []_0)
qs_2_in_ag2(._22(X, Xs), Ys) -> if_qs_2_in_1_ag4(X, Xs, Ys, part_4_in_aaaa4(X, Xs, Littles, Bigs))
part_4_in_aaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_aaaa6(X, Y, Xs, Ls, Bs, less_2_in_aa2(X, Y))
less_2_in_aa2(0_0, s_11(underscore1)) -> less_2_out_aa2(0_0, s_11(underscore1))
less_2_in_aa2(s_11(X), s_11(Y)) -> if_less_2_in_1_aa3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_aa3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_aa2(s_11(X), s_11(Y))
if_part_4_in_1_aaaa6(X, Y, Xs, Ls, Bs, less_2_out_aa2(X, Y)) -> if_part_4_in_2_aaaa6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
part_4_in_gaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_gaaa6(X, Y, Xs, Ls, Bs, less_2_in_ga2(X, Y))
less_2_in_ga2(0_0, s_11(underscore1)) -> less_2_out_ga2(0_0, s_11(underscore1))
less_2_in_ga2(s_11(X), s_11(Y)) -> if_less_2_in_1_ga3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_ga3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_ga2(s_11(X), s_11(Y))
if_part_4_in_1_gaaa6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> if_part_4_in_2_gaaa6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
part_4_in_gaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_gaaa6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
part_4_in_gaaa4(underscore, []_0, []_0, []_0) -> part_4_out_gaaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_gaaa6(X, Y, Xs, Ls, Bs, part_4_out_gaaa4(X, Xs, Ls, Bs)) -> part_4_out_gaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_part_4_in_2_gaaa6(X, Y, Xs, Ls, Bs, part_4_out_gaaa4(X, Xs, Ls, Bs)) -> part_4_out_gaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
if_part_4_in_2_aaaa6(X, Y, Xs, Ls, Bs, part_4_out_gaaa4(X, Xs, Ls, Bs)) -> part_4_out_aaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
part_4_in_aaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_aaaa6(X, Y, Xs, Ls, Bs, part_4_in_aaaa4(X, Xs, Ls, Bs))
part_4_in_aaaa4(underscore, []_0, []_0, []_0) -> part_4_out_aaaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_aaaa6(X, Y, Xs, Ls, Bs, part_4_out_aaaa4(X, Xs, Ls, Bs)) -> part_4_out_aaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_qs_2_in_1_ag4(X, Xs, Ys, part_4_out_aaaa4(X, Xs, Littles, Bigs)) -> if_qs_2_in_2_ag6(X, Xs, Ys, Littles, Bigs, qs_2_in_ga2(Littles, Ls))
qs_2_in_ga2([]_0, []_0) -> qs_2_out_ga2([]_0, []_0)
qs_2_in_ga2(._22(X, Xs), Ys) -> if_qs_2_in_1_ga4(X, Xs, Ys, part_4_in_agaa4(X, Xs, Littles, Bigs))
part_4_in_agaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_agaa6(X, Y, Xs, Ls, Bs, less_2_in_aa2(X, Y))
if_part_4_in_1_agaa6(X, Y, Xs, Ls, Bs, less_2_out_aa2(X, Y)) -> if_part_4_in_2_agaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_ggaa6(X, Y, Xs, Ls, Bs, less_2_in_ga2(X, Y))
if_part_4_in_1_ggaa6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> if_part_4_in_2_ggaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_ggaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(underscore, []_0, []_0, []_0) -> part_4_out_ggaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_ggaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_ggaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_part_4_in_2_ggaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_ggaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
if_part_4_in_2_agaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_agaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
part_4_in_agaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_agaa6(X, Y, Xs, Ls, Bs, part_4_in_agaa4(X, Xs, Ls, Bs))
part_4_in_agaa4(underscore, []_0, []_0, []_0) -> part_4_out_agaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_agaa6(X, Y, Xs, Ls, Bs, part_4_out_agaa4(X, Xs, Ls, Bs)) -> part_4_out_agaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_qs_2_in_1_ga4(X, Xs, Ys, part_4_out_agaa4(X, Xs, Littles, Bigs)) -> if_qs_2_in_2_ga6(X, Xs, Ys, Littles, Bigs, qs_2_in_ga2(Littles, Ls))
if_qs_2_in_2_ga6(X, Xs, Ys, Littles, Bigs, qs_2_out_ga2(Littles, Ls)) -> if_qs_2_in_3_ga6(X, Xs, Ys, Bigs, Ls, qs_2_in_ga2(Bigs, Bs))
if_qs_2_in_3_ga6(X, Xs, Ys, Bigs, Ls, qs_2_out_ga2(Bigs, Bs)) -> if_qs_2_in_4_ga6(X, Xs, Ys, Ls, Bs, app_3_in_gga3(Ls, ._22(X, Bs), Ys))
app_3_in_gga3([]_0, X, X) -> app_3_out_gga3([]_0, X, X)
app_3_in_gga3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_gga5(X, Xs, Ys, Zs, app_3_in_gga3(Xs, Ys, Zs))
if_app_3_in_1_gga5(X, Xs, Ys, Zs, app_3_out_gga3(Xs, Ys, Zs)) -> app_3_out_gga3(._22(X, Xs), Ys, ._22(X, Zs))
if_qs_2_in_4_ga6(X, Xs, Ys, Ls, Bs, app_3_out_gga3(Ls, ._22(X, Bs), Ys)) -> qs_2_out_ga2(._22(X, Xs), Ys)
if_qs_2_in_2_ag6(X, Xs, Ys, Littles, Bigs, qs_2_out_ga2(Littles, Ls)) -> if_qs_2_in_3_ag6(X, Xs, Ys, Bigs, Ls, qs_2_in_ga2(Bigs, Bs))
if_qs_2_in_3_ag6(X, Xs, Ys, Bigs, Ls, qs_2_out_ga2(Bigs, Bs)) -> if_qs_2_in_4_ag6(X, Xs, Ys, Ls, Bs, app_3_in_ggg3(Ls, ._22(X, Bs), Ys))
app_3_in_ggg3([]_0, X, X) -> app_3_out_ggg3([]_0, X, X)
app_3_in_ggg3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_ggg5(X, Xs, Ys, Zs, app_3_in_ggg3(Xs, Ys, Zs))
if_app_3_in_1_ggg5(X, Xs, Ys, Zs, app_3_out_ggg3(Xs, Ys, Zs)) -> app_3_out_ggg3(._22(X, Xs), Ys, ._22(X, Zs))
if_qs_2_in_4_ag6(X, Xs, Ys, Ls, Bs, app_3_out_ggg3(Ls, ._22(X, Bs), Ys)) -> qs_2_out_ag2(._22(X, Xs), Ys)

The argument filtering Pi contains the following mapping:
qs_2_in_ag2(x1, x2)  =  qs_2_in_ag1(x2)
[]_0  =  []_0
._22(x1, x2)  =  ._21(x2)
0_0  =  0_0
s_11(x1)  =  s_1
qs_2_out_ag2(x1, x2)  =  qs_2_out_ag1(x1)
if_qs_2_in_1_ag4(x1, x2, x3, x4)  =  if_qs_2_in_1_ag2(x3, x4)
part_4_in_aaaa4(x1, x2, x3, x4)  =  part_4_in_aaaa
if_part_4_in_1_aaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_aaaa1(x6)
less_2_in_aa2(x1, x2)  =  less_2_in_aa
less_2_out_aa2(x1, x2)  =  less_2_out_aa2(x1, x2)
if_less_2_in_1_aa3(x1, x2, x3)  =  if_less_2_in_1_aa1(x3)
if_part_4_in_2_aaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_aaaa1(x6)
part_4_in_gaaa4(x1, x2, x3, x4)  =  part_4_in_gaaa1(x1)
if_part_4_in_1_gaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_gaaa2(x1, x6)
less_2_in_ga2(x1, x2)  =  less_2_in_ga1(x1)
less_2_out_ga2(x1, x2)  =  less_2_out_ga1(x2)
if_less_2_in_1_ga3(x1, x2, x3)  =  if_less_2_in_1_ga1(x3)
if_part_4_in_2_gaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_gaaa1(x6)
if_part_4_in_3_gaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_gaaa1(x6)
part_4_out_gaaa4(x1, x2, x3, x4)  =  part_4_out_gaaa3(x2, x3, x4)
part_4_out_aaaa4(x1, x2, x3, x4)  =  part_4_out_aaaa3(x2, x3, x4)
if_part_4_in_3_aaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_aaaa1(x6)
if_qs_2_in_2_ag6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_2_ag4(x2, x3, x5, x6)
qs_2_in_ga2(x1, x2)  =  qs_2_in_ga1(x1)
qs_2_out_ga2(x1, x2)  =  qs_2_out_ga1(x2)
if_qs_2_in_1_ga4(x1, x2, x3, x4)  =  if_qs_2_in_1_ga1(x4)
part_4_in_agaa4(x1, x2, x3, x4)  =  part_4_in_agaa1(x2)
if_part_4_in_1_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_agaa2(x3, x6)
if_part_4_in_2_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_agaa1(x6)
part_4_in_ggaa4(x1, x2, x3, x4)  =  part_4_in_ggaa2(x1, x2)
if_part_4_in_1_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_ggaa3(x1, x3, x6)
if_part_4_in_2_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_ggaa1(x6)
if_part_4_in_3_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_ggaa1(x6)
part_4_out_ggaa4(x1, x2, x3, x4)  =  part_4_out_ggaa2(x3, x4)
part_4_out_agaa4(x1, x2, x3, x4)  =  part_4_out_agaa2(x3, x4)
if_part_4_in_3_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_agaa1(x6)
if_qs_2_in_2_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_2_ga2(x5, x6)
if_qs_2_in_3_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_3_ga2(x5, x6)
if_qs_2_in_4_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_4_ga1(x6)
app_3_in_gga3(x1, x2, x3)  =  app_3_in_gga2(x1, x2)
app_3_out_gga3(x1, x2, x3)  =  app_3_out_gga1(x3)
if_app_3_in_1_gga5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_gga1(x5)
if_qs_2_in_3_ag6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_3_ag4(x2, x3, x5, x6)
if_qs_2_in_4_ag6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_4_ag2(x2, x6)
app_3_in_ggg3(x1, x2, x3)  =  app_3_in_ggg3(x1, x2, x3)
app_3_out_ggg3(x1, x2, x3)  =  app_3_out_ggg
if_app_3_in_1_ggg5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_ggg1(x5)
PART_4_IN_AGAA4(x1, x2, x3, x4)  =  PART_4_IN_AGAA1(x2)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

PART_4_IN_AGAA4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> PART_4_IN_AGAA4(X, Xs, Ls, Bs)

R is empty.
The argument filtering Pi contains the following mapping:
._22(x1, x2)  =  ._21(x2)
PART_4_IN_AGAA4(x1, x2, x3, x4)  =  PART_4_IN_AGAA1(x2)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
  ↳ PrologToPiTRSProof

Q DP problem:
The TRS P consists of the following rules:

PART_4_IN_AGAA1(._21(Xs)) -> PART_4_IN_AGAA1(Xs)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
By using the subterm criterion together with the size-change analysis we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
PiDP
                ↳ UsableRulesProof
              ↳ PiDP
              ↳ PiDP
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

IF_QS_2_IN_2_GA6(X, Xs, Ys, Littles, Bigs, qs_2_out_ga2(Littles, Ls)) -> QS_2_IN_GA2(Bigs, Bs)
IF_QS_2_IN_1_GA4(X, Xs, Ys, part_4_out_agaa4(X, Xs, Littles, Bigs)) -> IF_QS_2_IN_2_GA6(X, Xs, Ys, Littles, Bigs, qs_2_in_ga2(Littles, Ls))
IF_QS_2_IN_1_GA4(X, Xs, Ys, part_4_out_agaa4(X, Xs, Littles, Bigs)) -> QS_2_IN_GA2(Littles, Ls)
QS_2_IN_GA2(._22(X, Xs), Ys) -> IF_QS_2_IN_1_GA4(X, Xs, Ys, part_4_in_agaa4(X, Xs, Littles, Bigs))

The TRS R consists of the following rules:

qs_2_in_ag2([]_0, []_0) -> qs_2_out_ag2([]_0, []_0)
qs_2_in_ag2(._22(X, Xs), Ys) -> if_qs_2_in_1_ag4(X, Xs, Ys, part_4_in_aaaa4(X, Xs, Littles, Bigs))
part_4_in_aaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_aaaa6(X, Y, Xs, Ls, Bs, less_2_in_aa2(X, Y))
less_2_in_aa2(0_0, s_11(underscore1)) -> less_2_out_aa2(0_0, s_11(underscore1))
less_2_in_aa2(s_11(X), s_11(Y)) -> if_less_2_in_1_aa3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_aa3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_aa2(s_11(X), s_11(Y))
if_part_4_in_1_aaaa6(X, Y, Xs, Ls, Bs, less_2_out_aa2(X, Y)) -> if_part_4_in_2_aaaa6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
part_4_in_gaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_gaaa6(X, Y, Xs, Ls, Bs, less_2_in_ga2(X, Y))
less_2_in_ga2(0_0, s_11(underscore1)) -> less_2_out_ga2(0_0, s_11(underscore1))
less_2_in_ga2(s_11(X), s_11(Y)) -> if_less_2_in_1_ga3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_ga3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_ga2(s_11(X), s_11(Y))
if_part_4_in_1_gaaa6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> if_part_4_in_2_gaaa6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
part_4_in_gaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_gaaa6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
part_4_in_gaaa4(underscore, []_0, []_0, []_0) -> part_4_out_gaaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_gaaa6(X, Y, Xs, Ls, Bs, part_4_out_gaaa4(X, Xs, Ls, Bs)) -> part_4_out_gaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_part_4_in_2_gaaa6(X, Y, Xs, Ls, Bs, part_4_out_gaaa4(X, Xs, Ls, Bs)) -> part_4_out_gaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
if_part_4_in_2_aaaa6(X, Y, Xs, Ls, Bs, part_4_out_gaaa4(X, Xs, Ls, Bs)) -> part_4_out_aaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
part_4_in_aaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_aaaa6(X, Y, Xs, Ls, Bs, part_4_in_aaaa4(X, Xs, Ls, Bs))
part_4_in_aaaa4(underscore, []_0, []_0, []_0) -> part_4_out_aaaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_aaaa6(X, Y, Xs, Ls, Bs, part_4_out_aaaa4(X, Xs, Ls, Bs)) -> part_4_out_aaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_qs_2_in_1_ag4(X, Xs, Ys, part_4_out_aaaa4(X, Xs, Littles, Bigs)) -> if_qs_2_in_2_ag6(X, Xs, Ys, Littles, Bigs, qs_2_in_ga2(Littles, Ls))
qs_2_in_ga2([]_0, []_0) -> qs_2_out_ga2([]_0, []_0)
qs_2_in_ga2(._22(X, Xs), Ys) -> if_qs_2_in_1_ga4(X, Xs, Ys, part_4_in_agaa4(X, Xs, Littles, Bigs))
part_4_in_agaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_agaa6(X, Y, Xs, Ls, Bs, less_2_in_aa2(X, Y))
if_part_4_in_1_agaa6(X, Y, Xs, Ls, Bs, less_2_out_aa2(X, Y)) -> if_part_4_in_2_agaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_ggaa6(X, Y, Xs, Ls, Bs, less_2_in_ga2(X, Y))
if_part_4_in_1_ggaa6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> if_part_4_in_2_ggaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_ggaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(underscore, []_0, []_0, []_0) -> part_4_out_ggaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_ggaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_ggaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_part_4_in_2_ggaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_ggaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
if_part_4_in_2_agaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_agaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
part_4_in_agaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_agaa6(X, Y, Xs, Ls, Bs, part_4_in_agaa4(X, Xs, Ls, Bs))
part_4_in_agaa4(underscore, []_0, []_0, []_0) -> part_4_out_agaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_agaa6(X, Y, Xs, Ls, Bs, part_4_out_agaa4(X, Xs, Ls, Bs)) -> part_4_out_agaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_qs_2_in_1_ga4(X, Xs, Ys, part_4_out_agaa4(X, Xs, Littles, Bigs)) -> if_qs_2_in_2_ga6(X, Xs, Ys, Littles, Bigs, qs_2_in_ga2(Littles, Ls))
if_qs_2_in_2_ga6(X, Xs, Ys, Littles, Bigs, qs_2_out_ga2(Littles, Ls)) -> if_qs_2_in_3_ga6(X, Xs, Ys, Bigs, Ls, qs_2_in_ga2(Bigs, Bs))
if_qs_2_in_3_ga6(X, Xs, Ys, Bigs, Ls, qs_2_out_ga2(Bigs, Bs)) -> if_qs_2_in_4_ga6(X, Xs, Ys, Ls, Bs, app_3_in_gga3(Ls, ._22(X, Bs), Ys))
app_3_in_gga3([]_0, X, X) -> app_3_out_gga3([]_0, X, X)
app_3_in_gga3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_gga5(X, Xs, Ys, Zs, app_3_in_gga3(Xs, Ys, Zs))
if_app_3_in_1_gga5(X, Xs, Ys, Zs, app_3_out_gga3(Xs, Ys, Zs)) -> app_3_out_gga3(._22(X, Xs), Ys, ._22(X, Zs))
if_qs_2_in_4_ga6(X, Xs, Ys, Ls, Bs, app_3_out_gga3(Ls, ._22(X, Bs), Ys)) -> qs_2_out_ga2(._22(X, Xs), Ys)
if_qs_2_in_2_ag6(X, Xs, Ys, Littles, Bigs, qs_2_out_ga2(Littles, Ls)) -> if_qs_2_in_3_ag6(X, Xs, Ys, Bigs, Ls, qs_2_in_ga2(Bigs, Bs))
if_qs_2_in_3_ag6(X, Xs, Ys, Bigs, Ls, qs_2_out_ga2(Bigs, Bs)) -> if_qs_2_in_4_ag6(X, Xs, Ys, Ls, Bs, app_3_in_ggg3(Ls, ._22(X, Bs), Ys))
app_3_in_ggg3([]_0, X, X) -> app_3_out_ggg3([]_0, X, X)
app_3_in_ggg3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_ggg5(X, Xs, Ys, Zs, app_3_in_ggg3(Xs, Ys, Zs))
if_app_3_in_1_ggg5(X, Xs, Ys, Zs, app_3_out_ggg3(Xs, Ys, Zs)) -> app_3_out_ggg3(._22(X, Xs), Ys, ._22(X, Zs))
if_qs_2_in_4_ag6(X, Xs, Ys, Ls, Bs, app_3_out_ggg3(Ls, ._22(X, Bs), Ys)) -> qs_2_out_ag2(._22(X, Xs), Ys)

The argument filtering Pi contains the following mapping:
qs_2_in_ag2(x1, x2)  =  qs_2_in_ag1(x2)
[]_0  =  []_0
._22(x1, x2)  =  ._21(x2)
0_0  =  0_0
s_11(x1)  =  s_1
qs_2_out_ag2(x1, x2)  =  qs_2_out_ag1(x1)
if_qs_2_in_1_ag4(x1, x2, x3, x4)  =  if_qs_2_in_1_ag2(x3, x4)
part_4_in_aaaa4(x1, x2, x3, x4)  =  part_4_in_aaaa
if_part_4_in_1_aaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_aaaa1(x6)
less_2_in_aa2(x1, x2)  =  less_2_in_aa
less_2_out_aa2(x1, x2)  =  less_2_out_aa2(x1, x2)
if_less_2_in_1_aa3(x1, x2, x3)  =  if_less_2_in_1_aa1(x3)
if_part_4_in_2_aaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_aaaa1(x6)
part_4_in_gaaa4(x1, x2, x3, x4)  =  part_4_in_gaaa1(x1)
if_part_4_in_1_gaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_gaaa2(x1, x6)
less_2_in_ga2(x1, x2)  =  less_2_in_ga1(x1)
less_2_out_ga2(x1, x2)  =  less_2_out_ga1(x2)
if_less_2_in_1_ga3(x1, x2, x3)  =  if_less_2_in_1_ga1(x3)
if_part_4_in_2_gaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_gaaa1(x6)
if_part_4_in_3_gaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_gaaa1(x6)
part_4_out_gaaa4(x1, x2, x3, x4)  =  part_4_out_gaaa3(x2, x3, x4)
part_4_out_aaaa4(x1, x2, x3, x4)  =  part_4_out_aaaa3(x2, x3, x4)
if_part_4_in_3_aaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_aaaa1(x6)
if_qs_2_in_2_ag6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_2_ag4(x2, x3, x5, x6)
qs_2_in_ga2(x1, x2)  =  qs_2_in_ga1(x1)
qs_2_out_ga2(x1, x2)  =  qs_2_out_ga1(x2)
if_qs_2_in_1_ga4(x1, x2, x3, x4)  =  if_qs_2_in_1_ga1(x4)
part_4_in_agaa4(x1, x2, x3, x4)  =  part_4_in_agaa1(x2)
if_part_4_in_1_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_agaa2(x3, x6)
if_part_4_in_2_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_agaa1(x6)
part_4_in_ggaa4(x1, x2, x3, x4)  =  part_4_in_ggaa2(x1, x2)
if_part_4_in_1_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_ggaa3(x1, x3, x6)
if_part_4_in_2_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_ggaa1(x6)
if_part_4_in_3_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_ggaa1(x6)
part_4_out_ggaa4(x1, x2, x3, x4)  =  part_4_out_ggaa2(x3, x4)
part_4_out_agaa4(x1, x2, x3, x4)  =  part_4_out_agaa2(x3, x4)
if_part_4_in_3_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_agaa1(x6)
if_qs_2_in_2_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_2_ga2(x5, x6)
if_qs_2_in_3_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_3_ga2(x5, x6)
if_qs_2_in_4_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_4_ga1(x6)
app_3_in_gga3(x1, x2, x3)  =  app_3_in_gga2(x1, x2)
app_3_out_gga3(x1, x2, x3)  =  app_3_out_gga1(x3)
if_app_3_in_1_gga5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_gga1(x5)
if_qs_2_in_3_ag6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_3_ag4(x2, x3, x5, x6)
if_qs_2_in_4_ag6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_4_ag2(x2, x6)
app_3_in_ggg3(x1, x2, x3)  =  app_3_in_ggg3(x1, x2, x3)
app_3_out_ggg3(x1, x2, x3)  =  app_3_out_ggg
if_app_3_in_1_ggg5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_ggg1(x5)
IF_QS_2_IN_2_GA6(x1, x2, x3, x4, x5, x6)  =  IF_QS_2_IN_2_GA2(x5, x6)
QS_2_IN_GA2(x1, x2)  =  QS_2_IN_GA1(x1)
IF_QS_2_IN_1_GA4(x1, x2, x3, x4)  =  IF_QS_2_IN_1_GA1(x4)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
              ↳ PiDP
              ↳ PiDP
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

IF_QS_2_IN_2_GA6(X, Xs, Ys, Littles, Bigs, qs_2_out_ga2(Littles, Ls)) -> QS_2_IN_GA2(Bigs, Bs)
IF_QS_2_IN_1_GA4(X, Xs, Ys, part_4_out_agaa4(X, Xs, Littles, Bigs)) -> IF_QS_2_IN_2_GA6(X, Xs, Ys, Littles, Bigs, qs_2_in_ga2(Littles, Ls))
IF_QS_2_IN_1_GA4(X, Xs, Ys, part_4_out_agaa4(X, Xs, Littles, Bigs)) -> QS_2_IN_GA2(Littles, Ls)
QS_2_IN_GA2(._22(X, Xs), Ys) -> IF_QS_2_IN_1_GA4(X, Xs, Ys, part_4_in_agaa4(X, Xs, Littles, Bigs))

The TRS R consists of the following rules:

qs_2_in_ga2([]_0, []_0) -> qs_2_out_ga2([]_0, []_0)
qs_2_in_ga2(._22(X, Xs), Ys) -> if_qs_2_in_1_ga4(X, Xs, Ys, part_4_in_agaa4(X, Xs, Littles, Bigs))
part_4_in_agaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_agaa6(X, Y, Xs, Ls, Bs, less_2_in_aa2(X, Y))
part_4_in_agaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_agaa6(X, Y, Xs, Ls, Bs, part_4_in_agaa4(X, Xs, Ls, Bs))
part_4_in_agaa4(underscore, []_0, []_0, []_0) -> part_4_out_agaa4(underscore, []_0, []_0, []_0)
if_qs_2_in_1_ga4(X, Xs, Ys, part_4_out_agaa4(X, Xs, Littles, Bigs)) -> if_qs_2_in_2_ga6(X, Xs, Ys, Littles, Bigs, qs_2_in_ga2(Littles, Ls))
if_part_4_in_1_agaa6(X, Y, Xs, Ls, Bs, less_2_out_aa2(X, Y)) -> if_part_4_in_2_agaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
if_part_4_in_3_agaa6(X, Y, Xs, Ls, Bs, part_4_out_agaa4(X, Xs, Ls, Bs)) -> part_4_out_agaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_qs_2_in_2_ga6(X, Xs, Ys, Littles, Bigs, qs_2_out_ga2(Littles, Ls)) -> if_qs_2_in_3_ga6(X, Xs, Ys, Bigs, Ls, qs_2_in_ga2(Bigs, Bs))
less_2_in_aa2(0_0, s_11(underscore1)) -> less_2_out_aa2(0_0, s_11(underscore1))
less_2_in_aa2(s_11(X), s_11(Y)) -> if_less_2_in_1_aa3(X, Y, less_2_in_aa2(X, Y))
if_part_4_in_2_agaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_agaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
if_qs_2_in_3_ga6(X, Xs, Ys, Bigs, Ls, qs_2_out_ga2(Bigs, Bs)) -> if_qs_2_in_4_ga6(X, Xs, Ys, Ls, Bs, app_3_in_gga3(Ls, ._22(X, Bs), Ys))
if_less_2_in_1_aa3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_aa2(s_11(X), s_11(Y))
part_4_in_ggaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_ggaa6(X, Y, Xs, Ls, Bs, less_2_in_ga2(X, Y))
part_4_in_ggaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_ggaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(underscore, []_0, []_0, []_0) -> part_4_out_ggaa4(underscore, []_0, []_0, []_0)
if_qs_2_in_4_ga6(X, Xs, Ys, Ls, Bs, app_3_out_gga3(Ls, ._22(X, Bs), Ys)) -> qs_2_out_ga2(._22(X, Xs), Ys)
if_part_4_in_1_ggaa6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> if_part_4_in_2_ggaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
if_part_4_in_3_ggaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_ggaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
app_3_in_gga3([]_0, X, X) -> app_3_out_gga3([]_0, X, X)
app_3_in_gga3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_gga5(X, Xs, Ys, Zs, app_3_in_gga3(Xs, Ys, Zs))
less_2_in_ga2(0_0, s_11(underscore1)) -> less_2_out_ga2(0_0, s_11(underscore1))
less_2_in_ga2(s_11(X), s_11(Y)) -> if_less_2_in_1_ga3(X, Y, less_2_in_aa2(X, Y))
if_part_4_in_2_ggaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_ggaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
if_app_3_in_1_gga5(X, Xs, Ys, Zs, app_3_out_gga3(Xs, Ys, Zs)) -> app_3_out_gga3(._22(X, Xs), Ys, ._22(X, Zs))
if_less_2_in_1_ga3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_ga2(s_11(X), s_11(Y))

The argument filtering Pi contains the following mapping:
[]_0  =  []_0
._22(x1, x2)  =  ._21(x2)
0_0  =  0_0
s_11(x1)  =  s_1
less_2_in_aa2(x1, x2)  =  less_2_in_aa
less_2_out_aa2(x1, x2)  =  less_2_out_aa2(x1, x2)
if_less_2_in_1_aa3(x1, x2, x3)  =  if_less_2_in_1_aa1(x3)
less_2_in_ga2(x1, x2)  =  less_2_in_ga1(x1)
less_2_out_ga2(x1, x2)  =  less_2_out_ga1(x2)
if_less_2_in_1_ga3(x1, x2, x3)  =  if_less_2_in_1_ga1(x3)
qs_2_in_ga2(x1, x2)  =  qs_2_in_ga1(x1)
qs_2_out_ga2(x1, x2)  =  qs_2_out_ga1(x2)
if_qs_2_in_1_ga4(x1, x2, x3, x4)  =  if_qs_2_in_1_ga1(x4)
part_4_in_agaa4(x1, x2, x3, x4)  =  part_4_in_agaa1(x2)
if_part_4_in_1_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_agaa2(x3, x6)
if_part_4_in_2_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_agaa1(x6)
part_4_in_ggaa4(x1, x2, x3, x4)  =  part_4_in_ggaa2(x1, x2)
if_part_4_in_1_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_ggaa3(x1, x3, x6)
if_part_4_in_2_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_ggaa1(x6)
if_part_4_in_3_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_ggaa1(x6)
part_4_out_ggaa4(x1, x2, x3, x4)  =  part_4_out_ggaa2(x3, x4)
part_4_out_agaa4(x1, x2, x3, x4)  =  part_4_out_agaa2(x3, x4)
if_part_4_in_3_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_agaa1(x6)
if_qs_2_in_2_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_2_ga2(x5, x6)
if_qs_2_in_3_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_3_ga2(x5, x6)
if_qs_2_in_4_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_4_ga1(x6)
app_3_in_gga3(x1, x2, x3)  =  app_3_in_gga2(x1, x2)
app_3_out_gga3(x1, x2, x3)  =  app_3_out_gga1(x3)
if_app_3_in_1_gga5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_gga1(x5)
IF_QS_2_IN_2_GA6(x1, x2, x3, x4, x5, x6)  =  IF_QS_2_IN_2_GA2(x5, x6)
QS_2_IN_GA2(x1, x2)  =  QS_2_IN_GA1(x1)
IF_QS_2_IN_1_GA4(x1, x2, x3, x4)  =  IF_QS_2_IN_1_GA1(x4)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ QDPPoloProof
              ↳ PiDP
              ↳ PiDP
  ↳ PrologToPiTRSProof

Q DP problem:
The TRS P consists of the following rules:

QS_2_IN_GA1(._21(Xs)) -> IF_QS_2_IN_1_GA1(part_4_in_agaa1(Xs))
IF_QS_2_IN_1_GA1(part_4_out_agaa2(Littles, Bigs)) -> QS_2_IN_GA1(Littles)
IF_QS_2_IN_2_GA2(Bigs, qs_2_out_ga1(Ls)) -> QS_2_IN_GA1(Bigs)
IF_QS_2_IN_1_GA1(part_4_out_agaa2(Littles, Bigs)) -> IF_QS_2_IN_2_GA2(Bigs, qs_2_in_ga1(Littles))

The TRS R consists of the following rules:

qs_2_in_ga1([]_0) -> qs_2_out_ga1([]_0)
qs_2_in_ga1(._21(Xs)) -> if_qs_2_in_1_ga1(part_4_in_agaa1(Xs))
part_4_in_agaa1(._21(Xs)) -> if_part_4_in_1_agaa2(Xs, less_2_in_aa)
part_4_in_agaa1(._21(Xs)) -> if_part_4_in_3_agaa1(part_4_in_agaa1(Xs))
part_4_in_agaa1([]_0) -> part_4_out_agaa2([]_0, []_0)
if_qs_2_in_1_ga1(part_4_out_agaa2(Littles, Bigs)) -> if_qs_2_in_2_ga2(Bigs, qs_2_in_ga1(Littles))
if_part_4_in_1_agaa2(Xs, less_2_out_aa2(X, Y)) -> if_part_4_in_2_agaa1(part_4_in_ggaa2(X, Xs))
if_part_4_in_3_agaa1(part_4_out_agaa2(Ls, Bs)) -> part_4_out_agaa2(Ls, ._21(Bs))
if_qs_2_in_2_ga2(Bigs, qs_2_out_ga1(Ls)) -> if_qs_2_in_3_ga2(Ls, qs_2_in_ga1(Bigs))
less_2_in_aa -> less_2_out_aa2(0_0, s_1)
less_2_in_aa -> if_less_2_in_1_aa1(less_2_in_aa)
if_part_4_in_2_agaa1(part_4_out_ggaa2(Ls, Bs)) -> part_4_out_agaa2(._21(Ls), Bs)
if_qs_2_in_3_ga2(Ls, qs_2_out_ga1(Bs)) -> if_qs_2_in_4_ga1(app_3_in_gga2(Ls, ._21(Bs)))
if_less_2_in_1_aa1(less_2_out_aa2(X, Y)) -> less_2_out_aa2(s_1, s_1)
part_4_in_ggaa2(X, ._21(Xs)) -> if_part_4_in_1_ggaa3(X, Xs, less_2_in_ga1(X))
part_4_in_ggaa2(X, ._21(Xs)) -> if_part_4_in_3_ggaa1(part_4_in_ggaa2(X, Xs))
part_4_in_ggaa2(underscore, []_0) -> part_4_out_ggaa2([]_0, []_0)
if_qs_2_in_4_ga1(app_3_out_gga1(Ys)) -> qs_2_out_ga1(Ys)
if_part_4_in_1_ggaa3(X, Xs, less_2_out_ga1(Y)) -> if_part_4_in_2_ggaa1(part_4_in_ggaa2(X, Xs))
if_part_4_in_3_ggaa1(part_4_out_ggaa2(Ls, Bs)) -> part_4_out_ggaa2(Ls, ._21(Bs))
app_3_in_gga2([]_0, X) -> app_3_out_gga1(X)
app_3_in_gga2(._21(Xs), Ys) -> if_app_3_in_1_gga1(app_3_in_gga2(Xs, Ys))
less_2_in_ga1(0_0) -> less_2_out_ga1(s_1)
less_2_in_ga1(s_1) -> if_less_2_in_1_ga1(less_2_in_aa)
if_part_4_in_2_ggaa1(part_4_out_ggaa2(Ls, Bs)) -> part_4_out_ggaa2(._21(Ls), Bs)
if_app_3_in_1_gga1(app_3_out_gga1(Zs)) -> app_3_out_gga1(._21(Zs))
if_less_2_in_1_ga1(less_2_out_aa2(X, Y)) -> less_2_out_ga1(s_1)

The set Q consists of the following terms:

qs_2_in_ga1(x0)
part_4_in_agaa1(x0)
if_qs_2_in_1_ga1(x0)
if_part_4_in_1_agaa2(x0, x1)
if_part_4_in_3_agaa1(x0)
if_qs_2_in_2_ga2(x0, x1)
less_2_in_aa
if_part_4_in_2_agaa1(x0)
if_qs_2_in_3_ga2(x0, x1)
if_less_2_in_1_aa1(x0)
part_4_in_ggaa2(x0, x1)
if_qs_2_in_4_ga1(x0)
if_part_4_in_1_ggaa3(x0, x1, x2)
if_part_4_in_3_ggaa1(x0)
app_3_in_gga2(x0, x1)
less_2_in_ga1(x0)
if_part_4_in_2_ggaa1(x0)
if_app_3_in_1_gga1(x0)
if_less_2_in_1_ga1(x0)

We have to consider all (P,Q,R)-chains.
By using a polynomial ordering, the following set of Dependency Pairs of this DP problem can be strictly oriented.

QS_2_IN_GA1(._21(Xs)) -> IF_QS_2_IN_1_GA1(part_4_in_agaa1(Xs))
The remaining Dependency Pairs were at least non-strictly be oriented.

IF_QS_2_IN_1_GA1(part_4_out_agaa2(Littles, Bigs)) -> QS_2_IN_GA1(Littles)
IF_QS_2_IN_2_GA2(Bigs, qs_2_out_ga1(Ls)) -> QS_2_IN_GA1(Bigs)
IF_QS_2_IN_1_GA1(part_4_out_agaa2(Littles, Bigs)) -> IF_QS_2_IN_2_GA2(Bigs, qs_2_in_ga1(Littles))
With the implicit AFS we had to orient the following set of usable rules non-strictly.

if_part_4_in_3_ggaa1(part_4_out_ggaa2(Ls, Bs)) -> part_4_out_ggaa2(Ls, ._21(Bs))
if_part_4_in_2_agaa1(part_4_out_ggaa2(Ls, Bs)) -> part_4_out_agaa2(._21(Ls), Bs)
if_part_4_in_1_agaa2(Xs, less_2_out_aa2(X, Y)) -> if_part_4_in_2_agaa1(part_4_in_ggaa2(X, Xs))
part_4_in_ggaa2(underscore, []_0) -> part_4_out_ggaa2([]_0, []_0)
if_part_4_in_1_ggaa3(X, Xs, less_2_out_ga1(Y)) -> if_part_4_in_2_ggaa1(part_4_in_ggaa2(X, Xs))
if_part_4_in_3_agaa1(part_4_out_agaa2(Ls, Bs)) -> part_4_out_agaa2(Ls, ._21(Bs))
part_4_in_agaa1([]_0) -> part_4_out_agaa2([]_0, []_0)
part_4_in_ggaa2(X, ._21(Xs)) -> if_part_4_in_3_ggaa1(part_4_in_ggaa2(X, Xs))
if_part_4_in_2_ggaa1(part_4_out_ggaa2(Ls, Bs)) -> part_4_out_ggaa2(._21(Ls), Bs)
part_4_in_agaa1(._21(Xs)) -> if_part_4_in_1_agaa2(Xs, less_2_in_aa)
part_4_in_agaa1(._21(Xs)) -> if_part_4_in_3_agaa1(part_4_in_agaa1(Xs))
part_4_in_ggaa2(X, ._21(Xs)) -> if_part_4_in_1_ggaa3(X, Xs, less_2_in_ga1(X))
Used ordering: POLO with Polynomial interpretation:

POL(if_qs_2_in_4_ga1(x1)) = 0   
POL(0_0) = 0   
POL(if_part_4_in_1_ggaa3(x1, x2, x3)) = 1 + x2   
POL(IF_QS_2_IN_2_GA2(x1, x2)) = x1   
POL(if_part_4_in_2_ggaa1(x1)) = 1 + x1   
POL(if_part_4_in_3_ggaa1(x1)) = 1 + x1   
POL(if_less_2_in_1_aa1(x1)) = 0   
POL(if_part_4_in_1_agaa2(x1, x2)) = 1 + x1   
POL(less_2_in_ga1(x1)) = 0   
POL(if_part_4_in_3_agaa1(x1)) = 1 + x1   
POL(IF_QS_2_IN_1_GA1(x1)) = x1   
POL(part_4_out_agaa2(x1, x2)) = x1 + x2   
POL(app_3_out_gga1(x1)) = 0   
POL(QS_2_IN_GA1(x1)) = x1   
POL(if_part_4_in_2_agaa1(x1)) = 1 + x1   
POL(if_qs_2_in_2_ga2(x1, x2)) = 0   
POL(qs_2_in_ga1(x1)) = 0   
POL(less_2_out_ga1(x1)) = 0   
POL(part_4_in_ggaa2(x1, x2)) = x2   
POL(qs_2_out_ga1(x1)) = 0   
POL(if_less_2_in_1_ga1(x1)) = 0   
POL([]_0) = 0   
POL(s_1) = 0   
POL(if_qs_2_in_3_ga2(x1, x2)) = 0   
POL(if_app_3_in_1_gga1(x1)) = 0   
POL(part_4_out_ggaa2(x1, x2)) = x1 + x2   
POL(part_4_in_agaa1(x1)) = x1   
POL(less_2_in_aa) = 0   
POL(less_2_out_aa2(x1, x2)) = 0   
POL(if_qs_2_in_1_ga1(x1)) = 0   
POL(app_3_in_gga2(x1, x2)) = 0   
POL(._21(x1)) = 1 + x1   



↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
                      ↳ QDP
                        ↳ QDPPoloProof
QDP
                            ↳ DependencyGraphProof
              ↳ PiDP
              ↳ PiDP
  ↳ PrologToPiTRSProof

Q DP problem:
The TRS P consists of the following rules:

IF_QS_2_IN_1_GA1(part_4_out_agaa2(Littles, Bigs)) -> QS_2_IN_GA1(Littles)
IF_QS_2_IN_2_GA2(Bigs, qs_2_out_ga1(Ls)) -> QS_2_IN_GA1(Bigs)
IF_QS_2_IN_1_GA1(part_4_out_agaa2(Littles, Bigs)) -> IF_QS_2_IN_2_GA2(Bigs, qs_2_in_ga1(Littles))

The TRS R consists of the following rules:

qs_2_in_ga1([]_0) -> qs_2_out_ga1([]_0)
qs_2_in_ga1(._21(Xs)) -> if_qs_2_in_1_ga1(part_4_in_agaa1(Xs))
part_4_in_agaa1(._21(Xs)) -> if_part_4_in_1_agaa2(Xs, less_2_in_aa)
part_4_in_agaa1(._21(Xs)) -> if_part_4_in_3_agaa1(part_4_in_agaa1(Xs))
part_4_in_agaa1([]_0) -> part_4_out_agaa2([]_0, []_0)
if_qs_2_in_1_ga1(part_4_out_agaa2(Littles, Bigs)) -> if_qs_2_in_2_ga2(Bigs, qs_2_in_ga1(Littles))
if_part_4_in_1_agaa2(Xs, less_2_out_aa2(X, Y)) -> if_part_4_in_2_agaa1(part_4_in_ggaa2(X, Xs))
if_part_4_in_3_agaa1(part_4_out_agaa2(Ls, Bs)) -> part_4_out_agaa2(Ls, ._21(Bs))
if_qs_2_in_2_ga2(Bigs, qs_2_out_ga1(Ls)) -> if_qs_2_in_3_ga2(Ls, qs_2_in_ga1(Bigs))
less_2_in_aa -> less_2_out_aa2(0_0, s_1)
less_2_in_aa -> if_less_2_in_1_aa1(less_2_in_aa)
if_part_4_in_2_agaa1(part_4_out_ggaa2(Ls, Bs)) -> part_4_out_agaa2(._21(Ls), Bs)
if_qs_2_in_3_ga2(Ls, qs_2_out_ga1(Bs)) -> if_qs_2_in_4_ga1(app_3_in_gga2(Ls, ._21(Bs)))
if_less_2_in_1_aa1(less_2_out_aa2(X, Y)) -> less_2_out_aa2(s_1, s_1)
part_4_in_ggaa2(X, ._21(Xs)) -> if_part_4_in_1_ggaa3(X, Xs, less_2_in_ga1(X))
part_4_in_ggaa2(X, ._21(Xs)) -> if_part_4_in_3_ggaa1(part_4_in_ggaa2(X, Xs))
part_4_in_ggaa2(underscore, []_0) -> part_4_out_ggaa2([]_0, []_0)
if_qs_2_in_4_ga1(app_3_out_gga1(Ys)) -> qs_2_out_ga1(Ys)
if_part_4_in_1_ggaa3(X, Xs, less_2_out_ga1(Y)) -> if_part_4_in_2_ggaa1(part_4_in_ggaa2(X, Xs))
if_part_4_in_3_ggaa1(part_4_out_ggaa2(Ls, Bs)) -> part_4_out_ggaa2(Ls, ._21(Bs))
app_3_in_gga2([]_0, X) -> app_3_out_gga1(X)
app_3_in_gga2(._21(Xs), Ys) -> if_app_3_in_1_gga1(app_3_in_gga2(Xs, Ys))
less_2_in_ga1(0_0) -> less_2_out_ga1(s_1)
less_2_in_ga1(s_1) -> if_less_2_in_1_ga1(less_2_in_aa)
if_part_4_in_2_ggaa1(part_4_out_ggaa2(Ls, Bs)) -> part_4_out_ggaa2(._21(Ls), Bs)
if_app_3_in_1_gga1(app_3_out_gga1(Zs)) -> app_3_out_gga1(._21(Zs))
if_less_2_in_1_ga1(less_2_out_aa2(X, Y)) -> less_2_out_ga1(s_1)

The set Q consists of the following terms:

qs_2_in_ga1(x0)
part_4_in_agaa1(x0)
if_qs_2_in_1_ga1(x0)
if_part_4_in_1_agaa2(x0, x1)
if_part_4_in_3_agaa1(x0)
if_qs_2_in_2_ga2(x0, x1)
less_2_in_aa
if_part_4_in_2_agaa1(x0)
if_qs_2_in_3_ga2(x0, x1)
if_less_2_in_1_aa1(x0)
part_4_in_ggaa2(x0, x1)
if_qs_2_in_4_ga1(x0)
if_part_4_in_1_ggaa3(x0, x1, x2)
if_part_4_in_3_ggaa1(x0)
app_3_in_gga2(x0, x1)
less_2_in_ga1(x0)
if_part_4_in_2_ggaa1(x0)
if_app_3_in_1_gga1(x0)
if_less_2_in_1_ga1(x0)

We have to consider all (P,Q,R)-chains.
The approximation of the Dependency Graph contains 0 SCCs with 3 less nodes.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
PiDP
                ↳ UsableRulesProof
              ↳ PiDP
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

PART_4_IN_GAAA4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> IF_PART_4_IN_1_GAAA6(X, Y, Xs, Ls, Bs, less_2_in_ga2(X, Y))
PART_4_IN_GAAA4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> PART_4_IN_GAAA4(X, Xs, Ls, Bs)
IF_PART_4_IN_1_GAAA6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> PART_4_IN_GAAA4(X, Xs, Ls, Bs)

The TRS R consists of the following rules:

qs_2_in_ag2([]_0, []_0) -> qs_2_out_ag2([]_0, []_0)
qs_2_in_ag2(._22(X, Xs), Ys) -> if_qs_2_in_1_ag4(X, Xs, Ys, part_4_in_aaaa4(X, Xs, Littles, Bigs))
part_4_in_aaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_aaaa6(X, Y, Xs, Ls, Bs, less_2_in_aa2(X, Y))
less_2_in_aa2(0_0, s_11(underscore1)) -> less_2_out_aa2(0_0, s_11(underscore1))
less_2_in_aa2(s_11(X), s_11(Y)) -> if_less_2_in_1_aa3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_aa3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_aa2(s_11(X), s_11(Y))
if_part_4_in_1_aaaa6(X, Y, Xs, Ls, Bs, less_2_out_aa2(X, Y)) -> if_part_4_in_2_aaaa6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
part_4_in_gaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_gaaa6(X, Y, Xs, Ls, Bs, less_2_in_ga2(X, Y))
less_2_in_ga2(0_0, s_11(underscore1)) -> less_2_out_ga2(0_0, s_11(underscore1))
less_2_in_ga2(s_11(X), s_11(Y)) -> if_less_2_in_1_ga3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_ga3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_ga2(s_11(X), s_11(Y))
if_part_4_in_1_gaaa6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> if_part_4_in_2_gaaa6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
part_4_in_gaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_gaaa6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
part_4_in_gaaa4(underscore, []_0, []_0, []_0) -> part_4_out_gaaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_gaaa6(X, Y, Xs, Ls, Bs, part_4_out_gaaa4(X, Xs, Ls, Bs)) -> part_4_out_gaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_part_4_in_2_gaaa6(X, Y, Xs, Ls, Bs, part_4_out_gaaa4(X, Xs, Ls, Bs)) -> part_4_out_gaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
if_part_4_in_2_aaaa6(X, Y, Xs, Ls, Bs, part_4_out_gaaa4(X, Xs, Ls, Bs)) -> part_4_out_aaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
part_4_in_aaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_aaaa6(X, Y, Xs, Ls, Bs, part_4_in_aaaa4(X, Xs, Ls, Bs))
part_4_in_aaaa4(underscore, []_0, []_0, []_0) -> part_4_out_aaaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_aaaa6(X, Y, Xs, Ls, Bs, part_4_out_aaaa4(X, Xs, Ls, Bs)) -> part_4_out_aaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_qs_2_in_1_ag4(X, Xs, Ys, part_4_out_aaaa4(X, Xs, Littles, Bigs)) -> if_qs_2_in_2_ag6(X, Xs, Ys, Littles, Bigs, qs_2_in_ga2(Littles, Ls))
qs_2_in_ga2([]_0, []_0) -> qs_2_out_ga2([]_0, []_0)
qs_2_in_ga2(._22(X, Xs), Ys) -> if_qs_2_in_1_ga4(X, Xs, Ys, part_4_in_agaa4(X, Xs, Littles, Bigs))
part_4_in_agaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_agaa6(X, Y, Xs, Ls, Bs, less_2_in_aa2(X, Y))
if_part_4_in_1_agaa6(X, Y, Xs, Ls, Bs, less_2_out_aa2(X, Y)) -> if_part_4_in_2_agaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_ggaa6(X, Y, Xs, Ls, Bs, less_2_in_ga2(X, Y))
if_part_4_in_1_ggaa6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> if_part_4_in_2_ggaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_ggaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(underscore, []_0, []_0, []_0) -> part_4_out_ggaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_ggaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_ggaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_part_4_in_2_ggaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_ggaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
if_part_4_in_2_agaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_agaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
part_4_in_agaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_agaa6(X, Y, Xs, Ls, Bs, part_4_in_agaa4(X, Xs, Ls, Bs))
part_4_in_agaa4(underscore, []_0, []_0, []_0) -> part_4_out_agaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_agaa6(X, Y, Xs, Ls, Bs, part_4_out_agaa4(X, Xs, Ls, Bs)) -> part_4_out_agaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_qs_2_in_1_ga4(X, Xs, Ys, part_4_out_agaa4(X, Xs, Littles, Bigs)) -> if_qs_2_in_2_ga6(X, Xs, Ys, Littles, Bigs, qs_2_in_ga2(Littles, Ls))
if_qs_2_in_2_ga6(X, Xs, Ys, Littles, Bigs, qs_2_out_ga2(Littles, Ls)) -> if_qs_2_in_3_ga6(X, Xs, Ys, Bigs, Ls, qs_2_in_ga2(Bigs, Bs))
if_qs_2_in_3_ga6(X, Xs, Ys, Bigs, Ls, qs_2_out_ga2(Bigs, Bs)) -> if_qs_2_in_4_ga6(X, Xs, Ys, Ls, Bs, app_3_in_gga3(Ls, ._22(X, Bs), Ys))
app_3_in_gga3([]_0, X, X) -> app_3_out_gga3([]_0, X, X)
app_3_in_gga3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_gga5(X, Xs, Ys, Zs, app_3_in_gga3(Xs, Ys, Zs))
if_app_3_in_1_gga5(X, Xs, Ys, Zs, app_3_out_gga3(Xs, Ys, Zs)) -> app_3_out_gga3(._22(X, Xs), Ys, ._22(X, Zs))
if_qs_2_in_4_ga6(X, Xs, Ys, Ls, Bs, app_3_out_gga3(Ls, ._22(X, Bs), Ys)) -> qs_2_out_ga2(._22(X, Xs), Ys)
if_qs_2_in_2_ag6(X, Xs, Ys, Littles, Bigs, qs_2_out_ga2(Littles, Ls)) -> if_qs_2_in_3_ag6(X, Xs, Ys, Bigs, Ls, qs_2_in_ga2(Bigs, Bs))
if_qs_2_in_3_ag6(X, Xs, Ys, Bigs, Ls, qs_2_out_ga2(Bigs, Bs)) -> if_qs_2_in_4_ag6(X, Xs, Ys, Ls, Bs, app_3_in_ggg3(Ls, ._22(X, Bs), Ys))
app_3_in_ggg3([]_0, X, X) -> app_3_out_ggg3([]_0, X, X)
app_3_in_ggg3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_ggg5(X, Xs, Ys, Zs, app_3_in_ggg3(Xs, Ys, Zs))
if_app_3_in_1_ggg5(X, Xs, Ys, Zs, app_3_out_ggg3(Xs, Ys, Zs)) -> app_3_out_ggg3(._22(X, Xs), Ys, ._22(X, Zs))
if_qs_2_in_4_ag6(X, Xs, Ys, Ls, Bs, app_3_out_ggg3(Ls, ._22(X, Bs), Ys)) -> qs_2_out_ag2(._22(X, Xs), Ys)

The argument filtering Pi contains the following mapping:
qs_2_in_ag2(x1, x2)  =  qs_2_in_ag1(x2)
[]_0  =  []_0
._22(x1, x2)  =  ._21(x2)
0_0  =  0_0
s_11(x1)  =  s_1
qs_2_out_ag2(x1, x2)  =  qs_2_out_ag1(x1)
if_qs_2_in_1_ag4(x1, x2, x3, x4)  =  if_qs_2_in_1_ag2(x3, x4)
part_4_in_aaaa4(x1, x2, x3, x4)  =  part_4_in_aaaa
if_part_4_in_1_aaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_aaaa1(x6)
less_2_in_aa2(x1, x2)  =  less_2_in_aa
less_2_out_aa2(x1, x2)  =  less_2_out_aa2(x1, x2)
if_less_2_in_1_aa3(x1, x2, x3)  =  if_less_2_in_1_aa1(x3)
if_part_4_in_2_aaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_aaaa1(x6)
part_4_in_gaaa4(x1, x2, x3, x4)  =  part_4_in_gaaa1(x1)
if_part_4_in_1_gaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_gaaa2(x1, x6)
less_2_in_ga2(x1, x2)  =  less_2_in_ga1(x1)
less_2_out_ga2(x1, x2)  =  less_2_out_ga1(x2)
if_less_2_in_1_ga3(x1, x2, x3)  =  if_less_2_in_1_ga1(x3)
if_part_4_in_2_gaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_gaaa1(x6)
if_part_4_in_3_gaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_gaaa1(x6)
part_4_out_gaaa4(x1, x2, x3, x4)  =  part_4_out_gaaa3(x2, x3, x4)
part_4_out_aaaa4(x1, x2, x3, x4)  =  part_4_out_aaaa3(x2, x3, x4)
if_part_4_in_3_aaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_aaaa1(x6)
if_qs_2_in_2_ag6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_2_ag4(x2, x3, x5, x6)
qs_2_in_ga2(x1, x2)  =  qs_2_in_ga1(x1)
qs_2_out_ga2(x1, x2)  =  qs_2_out_ga1(x2)
if_qs_2_in_1_ga4(x1, x2, x3, x4)  =  if_qs_2_in_1_ga1(x4)
part_4_in_agaa4(x1, x2, x3, x4)  =  part_4_in_agaa1(x2)
if_part_4_in_1_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_agaa2(x3, x6)
if_part_4_in_2_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_agaa1(x6)
part_4_in_ggaa4(x1, x2, x3, x4)  =  part_4_in_ggaa2(x1, x2)
if_part_4_in_1_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_ggaa3(x1, x3, x6)
if_part_4_in_2_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_ggaa1(x6)
if_part_4_in_3_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_ggaa1(x6)
part_4_out_ggaa4(x1, x2, x3, x4)  =  part_4_out_ggaa2(x3, x4)
part_4_out_agaa4(x1, x2, x3, x4)  =  part_4_out_agaa2(x3, x4)
if_part_4_in_3_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_agaa1(x6)
if_qs_2_in_2_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_2_ga2(x5, x6)
if_qs_2_in_3_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_3_ga2(x5, x6)
if_qs_2_in_4_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_4_ga1(x6)
app_3_in_gga3(x1, x2, x3)  =  app_3_in_gga2(x1, x2)
app_3_out_gga3(x1, x2, x3)  =  app_3_out_gga1(x3)
if_app_3_in_1_gga5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_gga1(x5)
if_qs_2_in_3_ag6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_3_ag4(x2, x3, x5, x6)
if_qs_2_in_4_ag6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_4_ag2(x2, x6)
app_3_in_ggg3(x1, x2, x3)  =  app_3_in_ggg3(x1, x2, x3)
app_3_out_ggg3(x1, x2, x3)  =  app_3_out_ggg
if_app_3_in_1_ggg5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_ggg1(x5)
PART_4_IN_GAAA4(x1, x2, x3, x4)  =  PART_4_IN_GAAA1(x1)
IF_PART_4_IN_1_GAAA6(x1, x2, x3, x4, x5, x6)  =  IF_PART_4_IN_1_GAAA2(x1, x6)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
              ↳ PiDP
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

PART_4_IN_GAAA4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> IF_PART_4_IN_1_GAAA6(X, Y, Xs, Ls, Bs, less_2_in_ga2(X, Y))
PART_4_IN_GAAA4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> PART_4_IN_GAAA4(X, Xs, Ls, Bs)
IF_PART_4_IN_1_GAAA6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> PART_4_IN_GAAA4(X, Xs, Ls, Bs)

The TRS R consists of the following rules:

less_2_in_ga2(0_0, s_11(underscore1)) -> less_2_out_ga2(0_0, s_11(underscore1))
less_2_in_ga2(s_11(X), s_11(Y)) -> if_less_2_in_1_ga3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_ga3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_ga2(s_11(X), s_11(Y))
less_2_in_aa2(0_0, s_11(underscore1)) -> less_2_out_aa2(0_0, s_11(underscore1))
less_2_in_aa2(s_11(X), s_11(Y)) -> if_less_2_in_1_aa3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_aa3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_aa2(s_11(X), s_11(Y))

The argument filtering Pi contains the following mapping:
._22(x1, x2)  =  ._21(x2)
0_0  =  0_0
s_11(x1)  =  s_1
less_2_in_aa2(x1, x2)  =  less_2_in_aa
less_2_out_aa2(x1, x2)  =  less_2_out_aa2(x1, x2)
if_less_2_in_1_aa3(x1, x2, x3)  =  if_less_2_in_1_aa1(x3)
less_2_in_ga2(x1, x2)  =  less_2_in_ga1(x1)
less_2_out_ga2(x1, x2)  =  less_2_out_ga1(x2)
if_less_2_in_1_ga3(x1, x2, x3)  =  if_less_2_in_1_ga1(x3)
PART_4_IN_GAAA4(x1, x2, x3, x4)  =  PART_4_IN_GAAA1(x1)
IF_PART_4_IN_1_GAAA6(x1, x2, x3, x4, x5, x6)  =  IF_PART_4_IN_1_GAAA2(x1, x6)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
              ↳ PiDP
  ↳ PrologToPiTRSProof

Q DP problem:
The TRS P consists of the following rules:

PART_4_IN_GAAA1(X) -> IF_PART_4_IN_1_GAAA2(X, less_2_in_ga1(X))
IF_PART_4_IN_1_GAAA2(X, less_2_out_ga1(Y)) -> PART_4_IN_GAAA1(X)
PART_4_IN_GAAA1(X) -> PART_4_IN_GAAA1(X)

The TRS R consists of the following rules:

less_2_in_ga1(0_0) -> less_2_out_ga1(s_1)
less_2_in_ga1(s_1) -> if_less_2_in_1_ga1(less_2_in_aa)
if_less_2_in_1_ga1(less_2_out_aa2(X, Y)) -> less_2_out_ga1(s_1)
less_2_in_aa -> less_2_out_aa2(0_0, s_1)
less_2_in_aa -> if_less_2_in_1_aa1(less_2_in_aa)
if_less_2_in_1_aa1(less_2_out_aa2(X, Y)) -> less_2_out_aa2(s_1, s_1)

The set Q consists of the following terms:

less_2_in_ga1(x0)
if_less_2_in_1_ga1(x0)
less_2_in_aa
if_less_2_in_1_aa1(x0)

We have to consider all (P,Q,R)-chains.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
PiDP
                ↳ UsableRulesProof
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

PART_4_IN_AAAA4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> PART_4_IN_AAAA4(X, Xs, Ls, Bs)

The TRS R consists of the following rules:

qs_2_in_ag2([]_0, []_0) -> qs_2_out_ag2([]_0, []_0)
qs_2_in_ag2(._22(X, Xs), Ys) -> if_qs_2_in_1_ag4(X, Xs, Ys, part_4_in_aaaa4(X, Xs, Littles, Bigs))
part_4_in_aaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_aaaa6(X, Y, Xs, Ls, Bs, less_2_in_aa2(X, Y))
less_2_in_aa2(0_0, s_11(underscore1)) -> less_2_out_aa2(0_0, s_11(underscore1))
less_2_in_aa2(s_11(X), s_11(Y)) -> if_less_2_in_1_aa3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_aa3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_aa2(s_11(X), s_11(Y))
if_part_4_in_1_aaaa6(X, Y, Xs, Ls, Bs, less_2_out_aa2(X, Y)) -> if_part_4_in_2_aaaa6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
part_4_in_gaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_gaaa6(X, Y, Xs, Ls, Bs, less_2_in_ga2(X, Y))
less_2_in_ga2(0_0, s_11(underscore1)) -> less_2_out_ga2(0_0, s_11(underscore1))
less_2_in_ga2(s_11(X), s_11(Y)) -> if_less_2_in_1_ga3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_ga3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_ga2(s_11(X), s_11(Y))
if_part_4_in_1_gaaa6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> if_part_4_in_2_gaaa6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
part_4_in_gaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_gaaa6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
part_4_in_gaaa4(underscore, []_0, []_0, []_0) -> part_4_out_gaaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_gaaa6(X, Y, Xs, Ls, Bs, part_4_out_gaaa4(X, Xs, Ls, Bs)) -> part_4_out_gaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_part_4_in_2_gaaa6(X, Y, Xs, Ls, Bs, part_4_out_gaaa4(X, Xs, Ls, Bs)) -> part_4_out_gaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
if_part_4_in_2_aaaa6(X, Y, Xs, Ls, Bs, part_4_out_gaaa4(X, Xs, Ls, Bs)) -> part_4_out_aaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
part_4_in_aaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_aaaa6(X, Y, Xs, Ls, Bs, part_4_in_aaaa4(X, Xs, Ls, Bs))
part_4_in_aaaa4(underscore, []_0, []_0, []_0) -> part_4_out_aaaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_aaaa6(X, Y, Xs, Ls, Bs, part_4_out_aaaa4(X, Xs, Ls, Bs)) -> part_4_out_aaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_qs_2_in_1_ag4(X, Xs, Ys, part_4_out_aaaa4(X, Xs, Littles, Bigs)) -> if_qs_2_in_2_ag6(X, Xs, Ys, Littles, Bigs, qs_2_in_ga2(Littles, Ls))
qs_2_in_ga2([]_0, []_0) -> qs_2_out_ga2([]_0, []_0)
qs_2_in_ga2(._22(X, Xs), Ys) -> if_qs_2_in_1_ga4(X, Xs, Ys, part_4_in_agaa4(X, Xs, Littles, Bigs))
part_4_in_agaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_agaa6(X, Y, Xs, Ls, Bs, less_2_in_aa2(X, Y))
if_part_4_in_1_agaa6(X, Y, Xs, Ls, Bs, less_2_out_aa2(X, Y)) -> if_part_4_in_2_agaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_ggaa6(X, Y, Xs, Ls, Bs, less_2_in_ga2(X, Y))
if_part_4_in_1_ggaa6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> if_part_4_in_2_ggaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_ggaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(underscore, []_0, []_0, []_0) -> part_4_out_ggaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_ggaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_ggaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_part_4_in_2_ggaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_ggaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
if_part_4_in_2_agaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_agaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
part_4_in_agaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_agaa6(X, Y, Xs, Ls, Bs, part_4_in_agaa4(X, Xs, Ls, Bs))
part_4_in_agaa4(underscore, []_0, []_0, []_0) -> part_4_out_agaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_agaa6(X, Y, Xs, Ls, Bs, part_4_out_agaa4(X, Xs, Ls, Bs)) -> part_4_out_agaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_qs_2_in_1_ga4(X, Xs, Ys, part_4_out_agaa4(X, Xs, Littles, Bigs)) -> if_qs_2_in_2_ga6(X, Xs, Ys, Littles, Bigs, qs_2_in_ga2(Littles, Ls))
if_qs_2_in_2_ga6(X, Xs, Ys, Littles, Bigs, qs_2_out_ga2(Littles, Ls)) -> if_qs_2_in_3_ga6(X, Xs, Ys, Bigs, Ls, qs_2_in_ga2(Bigs, Bs))
if_qs_2_in_3_ga6(X, Xs, Ys, Bigs, Ls, qs_2_out_ga2(Bigs, Bs)) -> if_qs_2_in_4_ga6(X, Xs, Ys, Ls, Bs, app_3_in_gga3(Ls, ._22(X, Bs), Ys))
app_3_in_gga3([]_0, X, X) -> app_3_out_gga3([]_0, X, X)
app_3_in_gga3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_gga5(X, Xs, Ys, Zs, app_3_in_gga3(Xs, Ys, Zs))
if_app_3_in_1_gga5(X, Xs, Ys, Zs, app_3_out_gga3(Xs, Ys, Zs)) -> app_3_out_gga3(._22(X, Xs), Ys, ._22(X, Zs))
if_qs_2_in_4_ga6(X, Xs, Ys, Ls, Bs, app_3_out_gga3(Ls, ._22(X, Bs), Ys)) -> qs_2_out_ga2(._22(X, Xs), Ys)
if_qs_2_in_2_ag6(X, Xs, Ys, Littles, Bigs, qs_2_out_ga2(Littles, Ls)) -> if_qs_2_in_3_ag6(X, Xs, Ys, Bigs, Ls, qs_2_in_ga2(Bigs, Bs))
if_qs_2_in_3_ag6(X, Xs, Ys, Bigs, Ls, qs_2_out_ga2(Bigs, Bs)) -> if_qs_2_in_4_ag6(X, Xs, Ys, Ls, Bs, app_3_in_ggg3(Ls, ._22(X, Bs), Ys))
app_3_in_ggg3([]_0, X, X) -> app_3_out_ggg3([]_0, X, X)
app_3_in_ggg3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_ggg5(X, Xs, Ys, Zs, app_3_in_ggg3(Xs, Ys, Zs))
if_app_3_in_1_ggg5(X, Xs, Ys, Zs, app_3_out_ggg3(Xs, Ys, Zs)) -> app_3_out_ggg3(._22(X, Xs), Ys, ._22(X, Zs))
if_qs_2_in_4_ag6(X, Xs, Ys, Ls, Bs, app_3_out_ggg3(Ls, ._22(X, Bs), Ys)) -> qs_2_out_ag2(._22(X, Xs), Ys)

The argument filtering Pi contains the following mapping:
qs_2_in_ag2(x1, x2)  =  qs_2_in_ag1(x2)
[]_0  =  []_0
._22(x1, x2)  =  ._21(x2)
0_0  =  0_0
s_11(x1)  =  s_1
qs_2_out_ag2(x1, x2)  =  qs_2_out_ag1(x1)
if_qs_2_in_1_ag4(x1, x2, x3, x4)  =  if_qs_2_in_1_ag2(x3, x4)
part_4_in_aaaa4(x1, x2, x3, x4)  =  part_4_in_aaaa
if_part_4_in_1_aaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_aaaa1(x6)
less_2_in_aa2(x1, x2)  =  less_2_in_aa
less_2_out_aa2(x1, x2)  =  less_2_out_aa2(x1, x2)
if_less_2_in_1_aa3(x1, x2, x3)  =  if_less_2_in_1_aa1(x3)
if_part_4_in_2_aaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_aaaa1(x6)
part_4_in_gaaa4(x1, x2, x3, x4)  =  part_4_in_gaaa1(x1)
if_part_4_in_1_gaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_gaaa2(x1, x6)
less_2_in_ga2(x1, x2)  =  less_2_in_ga1(x1)
less_2_out_ga2(x1, x2)  =  less_2_out_ga1(x2)
if_less_2_in_1_ga3(x1, x2, x3)  =  if_less_2_in_1_ga1(x3)
if_part_4_in_2_gaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_gaaa1(x6)
if_part_4_in_3_gaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_gaaa1(x6)
part_4_out_gaaa4(x1, x2, x3, x4)  =  part_4_out_gaaa3(x2, x3, x4)
part_4_out_aaaa4(x1, x2, x3, x4)  =  part_4_out_aaaa3(x2, x3, x4)
if_part_4_in_3_aaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_aaaa1(x6)
if_qs_2_in_2_ag6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_2_ag4(x2, x3, x5, x6)
qs_2_in_ga2(x1, x2)  =  qs_2_in_ga1(x1)
qs_2_out_ga2(x1, x2)  =  qs_2_out_ga1(x2)
if_qs_2_in_1_ga4(x1, x2, x3, x4)  =  if_qs_2_in_1_ga1(x4)
part_4_in_agaa4(x1, x2, x3, x4)  =  part_4_in_agaa1(x2)
if_part_4_in_1_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_agaa2(x3, x6)
if_part_4_in_2_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_agaa1(x6)
part_4_in_ggaa4(x1, x2, x3, x4)  =  part_4_in_ggaa2(x1, x2)
if_part_4_in_1_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_ggaa3(x1, x3, x6)
if_part_4_in_2_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_ggaa1(x6)
if_part_4_in_3_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_ggaa1(x6)
part_4_out_ggaa4(x1, x2, x3, x4)  =  part_4_out_ggaa2(x3, x4)
part_4_out_agaa4(x1, x2, x3, x4)  =  part_4_out_agaa2(x3, x4)
if_part_4_in_3_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_agaa1(x6)
if_qs_2_in_2_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_2_ga2(x5, x6)
if_qs_2_in_3_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_3_ga2(x5, x6)
if_qs_2_in_4_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_4_ga1(x6)
app_3_in_gga3(x1, x2, x3)  =  app_3_in_gga2(x1, x2)
app_3_out_gga3(x1, x2, x3)  =  app_3_out_gga1(x3)
if_app_3_in_1_gga5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_gga1(x5)
if_qs_2_in_3_ag6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_3_ag4(x2, x3, x5, x6)
if_qs_2_in_4_ag6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_4_ag2(x2, x6)
app_3_in_ggg3(x1, x2, x3)  =  app_3_in_ggg3(x1, x2, x3)
app_3_out_ggg3(x1, x2, x3)  =  app_3_out_ggg
if_app_3_in_1_ggg5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_ggg1(x5)
PART_4_IN_AAAA4(x1, x2, x3, x4)  =  PART_4_IN_AAAA

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

PART_4_IN_AAAA4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> PART_4_IN_AAAA4(X, Xs, Ls, Bs)

R is empty.
The argument filtering Pi contains the following mapping:
._22(x1, x2)  =  ._21(x2)
PART_4_IN_AAAA4(x1, x2, x3, x4)  =  PART_4_IN_AAAA

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
  ↳ PrologToPiTRSProof

Q DP problem:
The TRS P consists of the following rules:

PART_4_IN_AAAA -> PART_4_IN_AAAA

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
With regard to the inferred argument filtering the predicates were used in the following modes:
qs2: (f,b) (b,f)
part4: (f,f,f,f) (b,f,f,f) (f,b,f,f) (b,b,f,f)
less2: (f,f) (b,f)
app3: (b,b,f) (b,b,b)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

qs_2_in_ag2([]_0, []_0) -> qs_2_out_ag2([]_0, []_0)
qs_2_in_ag2(._22(X, Xs), Ys) -> if_qs_2_in_1_ag4(X, Xs, Ys, part_4_in_aaaa4(X, Xs, Littles, Bigs))
part_4_in_aaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_aaaa6(X, Y, Xs, Ls, Bs, less_2_in_aa2(X, Y))
less_2_in_aa2(0_0, s_11(underscore1)) -> less_2_out_aa2(0_0, s_11(underscore1))
less_2_in_aa2(s_11(X), s_11(Y)) -> if_less_2_in_1_aa3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_aa3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_aa2(s_11(X), s_11(Y))
if_part_4_in_1_aaaa6(X, Y, Xs, Ls, Bs, less_2_out_aa2(X, Y)) -> if_part_4_in_2_aaaa6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
part_4_in_gaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_gaaa6(X, Y, Xs, Ls, Bs, less_2_in_ga2(X, Y))
less_2_in_ga2(0_0, s_11(underscore1)) -> less_2_out_ga2(0_0, s_11(underscore1))
less_2_in_ga2(s_11(X), s_11(Y)) -> if_less_2_in_1_ga3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_ga3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_ga2(s_11(X), s_11(Y))
if_part_4_in_1_gaaa6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> if_part_4_in_2_gaaa6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
part_4_in_gaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_gaaa6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
part_4_in_gaaa4(underscore, []_0, []_0, []_0) -> part_4_out_gaaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_gaaa6(X, Y, Xs, Ls, Bs, part_4_out_gaaa4(X, Xs, Ls, Bs)) -> part_4_out_gaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_part_4_in_2_gaaa6(X, Y, Xs, Ls, Bs, part_4_out_gaaa4(X, Xs, Ls, Bs)) -> part_4_out_gaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
if_part_4_in_2_aaaa6(X, Y, Xs, Ls, Bs, part_4_out_gaaa4(X, Xs, Ls, Bs)) -> part_4_out_aaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
part_4_in_aaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_aaaa6(X, Y, Xs, Ls, Bs, part_4_in_aaaa4(X, Xs, Ls, Bs))
part_4_in_aaaa4(underscore, []_0, []_0, []_0) -> part_4_out_aaaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_aaaa6(X, Y, Xs, Ls, Bs, part_4_out_aaaa4(X, Xs, Ls, Bs)) -> part_4_out_aaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_qs_2_in_1_ag4(X, Xs, Ys, part_4_out_aaaa4(X, Xs, Littles, Bigs)) -> if_qs_2_in_2_ag6(X, Xs, Ys, Littles, Bigs, qs_2_in_ga2(Littles, Ls))
qs_2_in_ga2([]_0, []_0) -> qs_2_out_ga2([]_0, []_0)
qs_2_in_ga2(._22(X, Xs), Ys) -> if_qs_2_in_1_ga4(X, Xs, Ys, part_4_in_agaa4(X, Xs, Littles, Bigs))
part_4_in_agaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_agaa6(X, Y, Xs, Ls, Bs, less_2_in_aa2(X, Y))
if_part_4_in_1_agaa6(X, Y, Xs, Ls, Bs, less_2_out_aa2(X, Y)) -> if_part_4_in_2_agaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_ggaa6(X, Y, Xs, Ls, Bs, less_2_in_ga2(X, Y))
if_part_4_in_1_ggaa6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> if_part_4_in_2_ggaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_ggaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(underscore, []_0, []_0, []_0) -> part_4_out_ggaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_ggaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_ggaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_part_4_in_2_ggaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_ggaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
if_part_4_in_2_agaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_agaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
part_4_in_agaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_agaa6(X, Y, Xs, Ls, Bs, part_4_in_agaa4(X, Xs, Ls, Bs))
part_4_in_agaa4(underscore, []_0, []_0, []_0) -> part_4_out_agaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_agaa6(X, Y, Xs, Ls, Bs, part_4_out_agaa4(X, Xs, Ls, Bs)) -> part_4_out_agaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_qs_2_in_1_ga4(X, Xs, Ys, part_4_out_agaa4(X, Xs, Littles, Bigs)) -> if_qs_2_in_2_ga6(X, Xs, Ys, Littles, Bigs, qs_2_in_ga2(Littles, Ls))
if_qs_2_in_2_ga6(X, Xs, Ys, Littles, Bigs, qs_2_out_ga2(Littles, Ls)) -> if_qs_2_in_3_ga6(X, Xs, Ys, Bigs, Ls, qs_2_in_ga2(Bigs, Bs))
if_qs_2_in_3_ga6(X, Xs, Ys, Bigs, Ls, qs_2_out_ga2(Bigs, Bs)) -> if_qs_2_in_4_ga6(X, Xs, Ys, Ls, Bs, app_3_in_gga3(Ls, ._22(X, Bs), Ys))
app_3_in_gga3([]_0, X, X) -> app_3_out_gga3([]_0, X, X)
app_3_in_gga3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_gga5(X, Xs, Ys, Zs, app_3_in_gga3(Xs, Ys, Zs))
if_app_3_in_1_gga5(X, Xs, Ys, Zs, app_3_out_gga3(Xs, Ys, Zs)) -> app_3_out_gga3(._22(X, Xs), Ys, ._22(X, Zs))
if_qs_2_in_4_ga6(X, Xs, Ys, Ls, Bs, app_3_out_gga3(Ls, ._22(X, Bs), Ys)) -> qs_2_out_ga2(._22(X, Xs), Ys)
if_qs_2_in_2_ag6(X, Xs, Ys, Littles, Bigs, qs_2_out_ga2(Littles, Ls)) -> if_qs_2_in_3_ag6(X, Xs, Ys, Bigs, Ls, qs_2_in_ga2(Bigs, Bs))
if_qs_2_in_3_ag6(X, Xs, Ys, Bigs, Ls, qs_2_out_ga2(Bigs, Bs)) -> if_qs_2_in_4_ag6(X, Xs, Ys, Ls, Bs, app_3_in_ggg3(Ls, ._22(X, Bs), Ys))
app_3_in_ggg3([]_0, X, X) -> app_3_out_ggg3([]_0, X, X)
app_3_in_ggg3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_ggg5(X, Xs, Ys, Zs, app_3_in_ggg3(Xs, Ys, Zs))
if_app_3_in_1_ggg5(X, Xs, Ys, Zs, app_3_out_ggg3(Xs, Ys, Zs)) -> app_3_out_ggg3(._22(X, Xs), Ys, ._22(X, Zs))
if_qs_2_in_4_ag6(X, Xs, Ys, Ls, Bs, app_3_out_ggg3(Ls, ._22(X, Bs), Ys)) -> qs_2_out_ag2(._22(X, Xs), Ys)

The argument filtering Pi contains the following mapping:
qs_2_in_ag2(x1, x2)  =  qs_2_in_ag1(x2)
[]_0  =  []_0
._22(x1, x2)  =  ._21(x2)
0_0  =  0_0
s_11(x1)  =  s_1
qs_2_out_ag2(x1, x2)  =  qs_2_out_ag2(x1, x2)
if_qs_2_in_1_ag4(x1, x2, x3, x4)  =  if_qs_2_in_1_ag2(x3, x4)
part_4_in_aaaa4(x1, x2, x3, x4)  =  part_4_in_aaaa
if_part_4_in_1_aaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_aaaa1(x6)
less_2_in_aa2(x1, x2)  =  less_2_in_aa
less_2_out_aa2(x1, x2)  =  less_2_out_aa2(x1, x2)
if_less_2_in_1_aa3(x1, x2, x3)  =  if_less_2_in_1_aa1(x3)
if_part_4_in_2_aaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_aaaa1(x6)
part_4_in_gaaa4(x1, x2, x3, x4)  =  part_4_in_gaaa1(x1)
if_part_4_in_1_gaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_gaaa2(x1, x6)
less_2_in_ga2(x1, x2)  =  less_2_in_ga1(x1)
less_2_out_ga2(x1, x2)  =  less_2_out_ga2(x1, x2)
if_less_2_in_1_ga3(x1, x2, x3)  =  if_less_2_in_1_ga1(x3)
if_part_4_in_2_gaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_gaaa2(x1, x6)
if_part_4_in_3_gaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_gaaa2(x1, x6)
part_4_out_gaaa4(x1, x2, x3, x4)  =  part_4_out_gaaa4(x1, x2, x3, x4)
part_4_out_aaaa4(x1, x2, x3, x4)  =  part_4_out_aaaa3(x2, x3, x4)
if_part_4_in_3_aaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_aaaa1(x6)
if_qs_2_in_2_ag6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_2_ag4(x2, x3, x5, x6)
qs_2_in_ga2(x1, x2)  =  qs_2_in_ga1(x1)
qs_2_out_ga2(x1, x2)  =  qs_2_out_ga2(x1, x2)
if_qs_2_in_1_ga4(x1, x2, x3, x4)  =  if_qs_2_in_1_ga2(x2, x4)
part_4_in_agaa4(x1, x2, x3, x4)  =  part_4_in_agaa1(x2)
if_part_4_in_1_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_agaa2(x3, x6)
if_part_4_in_2_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_agaa2(x3, x6)
part_4_in_ggaa4(x1, x2, x3, x4)  =  part_4_in_ggaa2(x1, x2)
if_part_4_in_1_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_ggaa3(x1, x3, x6)
if_part_4_in_2_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_ggaa3(x1, x3, x6)
if_part_4_in_3_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_ggaa3(x1, x3, x6)
part_4_out_ggaa4(x1, x2, x3, x4)  =  part_4_out_ggaa4(x1, x2, x3, x4)
part_4_out_agaa4(x1, x2, x3, x4)  =  part_4_out_agaa3(x2, x3, x4)
if_part_4_in_3_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_agaa2(x3, x6)
if_qs_2_in_2_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_2_ga3(x2, x5, x6)
if_qs_2_in_3_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_3_ga3(x2, x5, x6)
if_qs_2_in_4_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_4_ga2(x2, x6)
app_3_in_gga3(x1, x2, x3)  =  app_3_in_gga2(x1, x2)
app_3_out_gga3(x1, x2, x3)  =  app_3_out_gga3(x1, x2, x3)
if_app_3_in_1_gga5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_gga3(x2, x3, x5)
if_qs_2_in_3_ag6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_3_ag4(x2, x3, x5, x6)
if_qs_2_in_4_ag6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_4_ag3(x2, x3, x6)
app_3_in_ggg3(x1, x2, x3)  =  app_3_in_ggg3(x1, x2, x3)
app_3_out_ggg3(x1, x2, x3)  =  app_3_out_ggg3(x1, x2, x3)
if_app_3_in_1_ggg5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_ggg4(x2, x3, x4, x5)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG



↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
PiTRS
      ↳ DependencyPairsProof

Pi-finite rewrite system:
The TRS R consists of the following rules:

qs_2_in_ag2([]_0, []_0) -> qs_2_out_ag2([]_0, []_0)
qs_2_in_ag2(._22(X, Xs), Ys) -> if_qs_2_in_1_ag4(X, Xs, Ys, part_4_in_aaaa4(X, Xs, Littles, Bigs))
part_4_in_aaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_aaaa6(X, Y, Xs, Ls, Bs, less_2_in_aa2(X, Y))
less_2_in_aa2(0_0, s_11(underscore1)) -> less_2_out_aa2(0_0, s_11(underscore1))
less_2_in_aa2(s_11(X), s_11(Y)) -> if_less_2_in_1_aa3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_aa3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_aa2(s_11(X), s_11(Y))
if_part_4_in_1_aaaa6(X, Y, Xs, Ls, Bs, less_2_out_aa2(X, Y)) -> if_part_4_in_2_aaaa6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
part_4_in_gaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_gaaa6(X, Y, Xs, Ls, Bs, less_2_in_ga2(X, Y))
less_2_in_ga2(0_0, s_11(underscore1)) -> less_2_out_ga2(0_0, s_11(underscore1))
less_2_in_ga2(s_11(X), s_11(Y)) -> if_less_2_in_1_ga3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_ga3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_ga2(s_11(X), s_11(Y))
if_part_4_in_1_gaaa6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> if_part_4_in_2_gaaa6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
part_4_in_gaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_gaaa6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
part_4_in_gaaa4(underscore, []_0, []_0, []_0) -> part_4_out_gaaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_gaaa6(X, Y, Xs, Ls, Bs, part_4_out_gaaa4(X, Xs, Ls, Bs)) -> part_4_out_gaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_part_4_in_2_gaaa6(X, Y, Xs, Ls, Bs, part_4_out_gaaa4(X, Xs, Ls, Bs)) -> part_4_out_gaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
if_part_4_in_2_aaaa6(X, Y, Xs, Ls, Bs, part_4_out_gaaa4(X, Xs, Ls, Bs)) -> part_4_out_aaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
part_4_in_aaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_aaaa6(X, Y, Xs, Ls, Bs, part_4_in_aaaa4(X, Xs, Ls, Bs))
part_4_in_aaaa4(underscore, []_0, []_0, []_0) -> part_4_out_aaaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_aaaa6(X, Y, Xs, Ls, Bs, part_4_out_aaaa4(X, Xs, Ls, Bs)) -> part_4_out_aaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_qs_2_in_1_ag4(X, Xs, Ys, part_4_out_aaaa4(X, Xs, Littles, Bigs)) -> if_qs_2_in_2_ag6(X, Xs, Ys, Littles, Bigs, qs_2_in_ga2(Littles, Ls))
qs_2_in_ga2([]_0, []_0) -> qs_2_out_ga2([]_0, []_0)
qs_2_in_ga2(._22(X, Xs), Ys) -> if_qs_2_in_1_ga4(X, Xs, Ys, part_4_in_agaa4(X, Xs, Littles, Bigs))
part_4_in_agaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_agaa6(X, Y, Xs, Ls, Bs, less_2_in_aa2(X, Y))
if_part_4_in_1_agaa6(X, Y, Xs, Ls, Bs, less_2_out_aa2(X, Y)) -> if_part_4_in_2_agaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_ggaa6(X, Y, Xs, Ls, Bs, less_2_in_ga2(X, Y))
if_part_4_in_1_ggaa6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> if_part_4_in_2_ggaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_ggaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(underscore, []_0, []_0, []_0) -> part_4_out_ggaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_ggaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_ggaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_part_4_in_2_ggaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_ggaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
if_part_4_in_2_agaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_agaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
part_4_in_agaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_agaa6(X, Y, Xs, Ls, Bs, part_4_in_agaa4(X, Xs, Ls, Bs))
part_4_in_agaa4(underscore, []_0, []_0, []_0) -> part_4_out_agaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_agaa6(X, Y, Xs, Ls, Bs, part_4_out_agaa4(X, Xs, Ls, Bs)) -> part_4_out_agaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_qs_2_in_1_ga4(X, Xs, Ys, part_4_out_agaa4(X, Xs, Littles, Bigs)) -> if_qs_2_in_2_ga6(X, Xs, Ys, Littles, Bigs, qs_2_in_ga2(Littles, Ls))
if_qs_2_in_2_ga6(X, Xs, Ys, Littles, Bigs, qs_2_out_ga2(Littles, Ls)) -> if_qs_2_in_3_ga6(X, Xs, Ys, Bigs, Ls, qs_2_in_ga2(Bigs, Bs))
if_qs_2_in_3_ga6(X, Xs, Ys, Bigs, Ls, qs_2_out_ga2(Bigs, Bs)) -> if_qs_2_in_4_ga6(X, Xs, Ys, Ls, Bs, app_3_in_gga3(Ls, ._22(X, Bs), Ys))
app_3_in_gga3([]_0, X, X) -> app_3_out_gga3([]_0, X, X)
app_3_in_gga3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_gga5(X, Xs, Ys, Zs, app_3_in_gga3(Xs, Ys, Zs))
if_app_3_in_1_gga5(X, Xs, Ys, Zs, app_3_out_gga3(Xs, Ys, Zs)) -> app_3_out_gga3(._22(X, Xs), Ys, ._22(X, Zs))
if_qs_2_in_4_ga6(X, Xs, Ys, Ls, Bs, app_3_out_gga3(Ls, ._22(X, Bs), Ys)) -> qs_2_out_ga2(._22(X, Xs), Ys)
if_qs_2_in_2_ag6(X, Xs, Ys, Littles, Bigs, qs_2_out_ga2(Littles, Ls)) -> if_qs_2_in_3_ag6(X, Xs, Ys, Bigs, Ls, qs_2_in_ga2(Bigs, Bs))
if_qs_2_in_3_ag6(X, Xs, Ys, Bigs, Ls, qs_2_out_ga2(Bigs, Bs)) -> if_qs_2_in_4_ag6(X, Xs, Ys, Ls, Bs, app_3_in_ggg3(Ls, ._22(X, Bs), Ys))
app_3_in_ggg3([]_0, X, X) -> app_3_out_ggg3([]_0, X, X)
app_3_in_ggg3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_ggg5(X, Xs, Ys, Zs, app_3_in_ggg3(Xs, Ys, Zs))
if_app_3_in_1_ggg5(X, Xs, Ys, Zs, app_3_out_ggg3(Xs, Ys, Zs)) -> app_3_out_ggg3(._22(X, Xs), Ys, ._22(X, Zs))
if_qs_2_in_4_ag6(X, Xs, Ys, Ls, Bs, app_3_out_ggg3(Ls, ._22(X, Bs), Ys)) -> qs_2_out_ag2(._22(X, Xs), Ys)

The argument filtering Pi contains the following mapping:
qs_2_in_ag2(x1, x2)  =  qs_2_in_ag1(x2)
[]_0  =  []_0
._22(x1, x2)  =  ._21(x2)
0_0  =  0_0
s_11(x1)  =  s_1
qs_2_out_ag2(x1, x2)  =  qs_2_out_ag2(x1, x2)
if_qs_2_in_1_ag4(x1, x2, x3, x4)  =  if_qs_2_in_1_ag2(x3, x4)
part_4_in_aaaa4(x1, x2, x3, x4)  =  part_4_in_aaaa
if_part_4_in_1_aaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_aaaa1(x6)
less_2_in_aa2(x1, x2)  =  less_2_in_aa
less_2_out_aa2(x1, x2)  =  less_2_out_aa2(x1, x2)
if_less_2_in_1_aa3(x1, x2, x3)  =  if_less_2_in_1_aa1(x3)
if_part_4_in_2_aaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_aaaa1(x6)
part_4_in_gaaa4(x1, x2, x3, x4)  =  part_4_in_gaaa1(x1)
if_part_4_in_1_gaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_gaaa2(x1, x6)
less_2_in_ga2(x1, x2)  =  less_2_in_ga1(x1)
less_2_out_ga2(x1, x2)  =  less_2_out_ga2(x1, x2)
if_less_2_in_1_ga3(x1, x2, x3)  =  if_less_2_in_1_ga1(x3)
if_part_4_in_2_gaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_gaaa2(x1, x6)
if_part_4_in_3_gaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_gaaa2(x1, x6)
part_4_out_gaaa4(x1, x2, x3, x4)  =  part_4_out_gaaa4(x1, x2, x3, x4)
part_4_out_aaaa4(x1, x2, x3, x4)  =  part_4_out_aaaa3(x2, x3, x4)
if_part_4_in_3_aaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_aaaa1(x6)
if_qs_2_in_2_ag6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_2_ag4(x2, x3, x5, x6)
qs_2_in_ga2(x1, x2)  =  qs_2_in_ga1(x1)
qs_2_out_ga2(x1, x2)  =  qs_2_out_ga2(x1, x2)
if_qs_2_in_1_ga4(x1, x2, x3, x4)  =  if_qs_2_in_1_ga2(x2, x4)
part_4_in_agaa4(x1, x2, x3, x4)  =  part_4_in_agaa1(x2)
if_part_4_in_1_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_agaa2(x3, x6)
if_part_4_in_2_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_agaa2(x3, x6)
part_4_in_ggaa4(x1, x2, x3, x4)  =  part_4_in_ggaa2(x1, x2)
if_part_4_in_1_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_ggaa3(x1, x3, x6)
if_part_4_in_2_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_ggaa3(x1, x3, x6)
if_part_4_in_3_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_ggaa3(x1, x3, x6)
part_4_out_ggaa4(x1, x2, x3, x4)  =  part_4_out_ggaa4(x1, x2, x3, x4)
part_4_out_agaa4(x1, x2, x3, x4)  =  part_4_out_agaa3(x2, x3, x4)
if_part_4_in_3_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_agaa2(x3, x6)
if_qs_2_in_2_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_2_ga3(x2, x5, x6)
if_qs_2_in_3_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_3_ga3(x2, x5, x6)
if_qs_2_in_4_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_4_ga2(x2, x6)
app_3_in_gga3(x1, x2, x3)  =  app_3_in_gga2(x1, x2)
app_3_out_gga3(x1, x2, x3)  =  app_3_out_gga3(x1, x2, x3)
if_app_3_in_1_gga5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_gga3(x2, x3, x5)
if_qs_2_in_3_ag6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_3_ag4(x2, x3, x5, x6)
if_qs_2_in_4_ag6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_4_ag3(x2, x3, x6)
app_3_in_ggg3(x1, x2, x3)  =  app_3_in_ggg3(x1, x2, x3)
app_3_out_ggg3(x1, x2, x3)  =  app_3_out_ggg3(x1, x2, x3)
if_app_3_in_1_ggg5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_ggg4(x2, x3, x4, x5)


Pi DP problem:
The TRS P consists of the following rules:

QS_2_IN_AG2(._22(X, Xs), Ys) -> IF_QS_2_IN_1_AG4(X, Xs, Ys, part_4_in_aaaa4(X, Xs, Littles, Bigs))
QS_2_IN_AG2(._22(X, Xs), Ys) -> PART_4_IN_AAAA4(X, Xs, Littles, Bigs)
PART_4_IN_AAAA4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> IF_PART_4_IN_1_AAAA6(X, Y, Xs, Ls, Bs, less_2_in_aa2(X, Y))
PART_4_IN_AAAA4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> LESS_2_IN_AA2(X, Y)
LESS_2_IN_AA2(s_11(X), s_11(Y)) -> IF_LESS_2_IN_1_AA3(X, Y, less_2_in_aa2(X, Y))
LESS_2_IN_AA2(s_11(X), s_11(Y)) -> LESS_2_IN_AA2(X, Y)
IF_PART_4_IN_1_AAAA6(X, Y, Xs, Ls, Bs, less_2_out_aa2(X, Y)) -> IF_PART_4_IN_2_AAAA6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
IF_PART_4_IN_1_AAAA6(X, Y, Xs, Ls, Bs, less_2_out_aa2(X, Y)) -> PART_4_IN_GAAA4(X, Xs, Ls, Bs)
PART_4_IN_GAAA4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> IF_PART_4_IN_1_GAAA6(X, Y, Xs, Ls, Bs, less_2_in_ga2(X, Y))
PART_4_IN_GAAA4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> LESS_2_IN_GA2(X, Y)
LESS_2_IN_GA2(s_11(X), s_11(Y)) -> IF_LESS_2_IN_1_GA3(X, Y, less_2_in_aa2(X, Y))
LESS_2_IN_GA2(s_11(X), s_11(Y)) -> LESS_2_IN_AA2(X, Y)
IF_PART_4_IN_1_GAAA6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> IF_PART_4_IN_2_GAAA6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
IF_PART_4_IN_1_GAAA6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> PART_4_IN_GAAA4(X, Xs, Ls, Bs)
PART_4_IN_GAAA4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> IF_PART_4_IN_3_GAAA6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
PART_4_IN_GAAA4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> PART_4_IN_GAAA4(X, Xs, Ls, Bs)
PART_4_IN_AAAA4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> IF_PART_4_IN_3_AAAA6(X, Y, Xs, Ls, Bs, part_4_in_aaaa4(X, Xs, Ls, Bs))
PART_4_IN_AAAA4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> PART_4_IN_AAAA4(X, Xs, Ls, Bs)
IF_QS_2_IN_1_AG4(X, Xs, Ys, part_4_out_aaaa4(X, Xs, Littles, Bigs)) -> IF_QS_2_IN_2_AG6(X, Xs, Ys, Littles, Bigs, qs_2_in_ga2(Littles, Ls))
IF_QS_2_IN_1_AG4(X, Xs, Ys, part_4_out_aaaa4(X, Xs, Littles, Bigs)) -> QS_2_IN_GA2(Littles, Ls)
QS_2_IN_GA2(._22(X, Xs), Ys) -> IF_QS_2_IN_1_GA4(X, Xs, Ys, part_4_in_agaa4(X, Xs, Littles, Bigs))
QS_2_IN_GA2(._22(X, Xs), Ys) -> PART_4_IN_AGAA4(X, Xs, Littles, Bigs)
PART_4_IN_AGAA4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> IF_PART_4_IN_1_AGAA6(X, Y, Xs, Ls, Bs, less_2_in_aa2(X, Y))
PART_4_IN_AGAA4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> LESS_2_IN_AA2(X, Y)
IF_PART_4_IN_1_AGAA6(X, Y, Xs, Ls, Bs, less_2_out_aa2(X, Y)) -> IF_PART_4_IN_2_AGAA6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
IF_PART_4_IN_1_AGAA6(X, Y, Xs, Ls, Bs, less_2_out_aa2(X, Y)) -> PART_4_IN_GGAA4(X, Xs, Ls, Bs)
PART_4_IN_GGAA4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> IF_PART_4_IN_1_GGAA6(X, Y, Xs, Ls, Bs, less_2_in_ga2(X, Y))
PART_4_IN_GGAA4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> LESS_2_IN_GA2(X, Y)
IF_PART_4_IN_1_GGAA6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> IF_PART_4_IN_2_GGAA6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
IF_PART_4_IN_1_GGAA6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> PART_4_IN_GGAA4(X, Xs, Ls, Bs)
PART_4_IN_GGAA4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> IF_PART_4_IN_3_GGAA6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
PART_4_IN_GGAA4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> PART_4_IN_GGAA4(X, Xs, Ls, Bs)
PART_4_IN_AGAA4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> IF_PART_4_IN_3_AGAA6(X, Y, Xs, Ls, Bs, part_4_in_agaa4(X, Xs, Ls, Bs))
PART_4_IN_AGAA4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> PART_4_IN_AGAA4(X, Xs, Ls, Bs)
IF_QS_2_IN_1_GA4(X, Xs, Ys, part_4_out_agaa4(X, Xs, Littles, Bigs)) -> IF_QS_2_IN_2_GA6(X, Xs, Ys, Littles, Bigs, qs_2_in_ga2(Littles, Ls))
IF_QS_2_IN_1_GA4(X, Xs, Ys, part_4_out_agaa4(X, Xs, Littles, Bigs)) -> QS_2_IN_GA2(Littles, Ls)
IF_QS_2_IN_2_GA6(X, Xs, Ys, Littles, Bigs, qs_2_out_ga2(Littles, Ls)) -> IF_QS_2_IN_3_GA6(X, Xs, Ys, Bigs, Ls, qs_2_in_ga2(Bigs, Bs))
IF_QS_2_IN_2_GA6(X, Xs, Ys, Littles, Bigs, qs_2_out_ga2(Littles, Ls)) -> QS_2_IN_GA2(Bigs, Bs)
IF_QS_2_IN_3_GA6(X, Xs, Ys, Bigs, Ls, qs_2_out_ga2(Bigs, Bs)) -> IF_QS_2_IN_4_GA6(X, Xs, Ys, Ls, Bs, app_3_in_gga3(Ls, ._22(X, Bs), Ys))
IF_QS_2_IN_3_GA6(X, Xs, Ys, Bigs, Ls, qs_2_out_ga2(Bigs, Bs)) -> APP_3_IN_GGA3(Ls, ._22(X, Bs), Ys)
APP_3_IN_GGA3(._22(X, Xs), Ys, ._22(X, Zs)) -> IF_APP_3_IN_1_GGA5(X, Xs, Ys, Zs, app_3_in_gga3(Xs, Ys, Zs))
APP_3_IN_GGA3(._22(X, Xs), Ys, ._22(X, Zs)) -> APP_3_IN_GGA3(Xs, Ys, Zs)
IF_QS_2_IN_2_AG6(X, Xs, Ys, Littles, Bigs, qs_2_out_ga2(Littles, Ls)) -> IF_QS_2_IN_3_AG6(X, Xs, Ys, Bigs, Ls, qs_2_in_ga2(Bigs, Bs))
IF_QS_2_IN_2_AG6(X, Xs, Ys, Littles, Bigs, qs_2_out_ga2(Littles, Ls)) -> QS_2_IN_GA2(Bigs, Bs)
IF_QS_2_IN_3_AG6(X, Xs, Ys, Bigs, Ls, qs_2_out_ga2(Bigs, Bs)) -> IF_QS_2_IN_4_AG6(X, Xs, Ys, Ls, Bs, app_3_in_ggg3(Ls, ._22(X, Bs), Ys))
IF_QS_2_IN_3_AG6(X, Xs, Ys, Bigs, Ls, qs_2_out_ga2(Bigs, Bs)) -> APP_3_IN_GGG3(Ls, ._22(X, Bs), Ys)
APP_3_IN_GGG3(._22(X, Xs), Ys, ._22(X, Zs)) -> IF_APP_3_IN_1_GGG5(X, Xs, Ys, Zs, app_3_in_ggg3(Xs, Ys, Zs))
APP_3_IN_GGG3(._22(X, Xs), Ys, ._22(X, Zs)) -> APP_3_IN_GGG3(Xs, Ys, Zs)

The TRS R consists of the following rules:

qs_2_in_ag2([]_0, []_0) -> qs_2_out_ag2([]_0, []_0)
qs_2_in_ag2(._22(X, Xs), Ys) -> if_qs_2_in_1_ag4(X, Xs, Ys, part_4_in_aaaa4(X, Xs, Littles, Bigs))
part_4_in_aaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_aaaa6(X, Y, Xs, Ls, Bs, less_2_in_aa2(X, Y))
less_2_in_aa2(0_0, s_11(underscore1)) -> less_2_out_aa2(0_0, s_11(underscore1))
less_2_in_aa2(s_11(X), s_11(Y)) -> if_less_2_in_1_aa3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_aa3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_aa2(s_11(X), s_11(Y))
if_part_4_in_1_aaaa6(X, Y, Xs, Ls, Bs, less_2_out_aa2(X, Y)) -> if_part_4_in_2_aaaa6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
part_4_in_gaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_gaaa6(X, Y, Xs, Ls, Bs, less_2_in_ga2(X, Y))
less_2_in_ga2(0_0, s_11(underscore1)) -> less_2_out_ga2(0_0, s_11(underscore1))
less_2_in_ga2(s_11(X), s_11(Y)) -> if_less_2_in_1_ga3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_ga3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_ga2(s_11(X), s_11(Y))
if_part_4_in_1_gaaa6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> if_part_4_in_2_gaaa6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
part_4_in_gaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_gaaa6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
part_4_in_gaaa4(underscore, []_0, []_0, []_0) -> part_4_out_gaaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_gaaa6(X, Y, Xs, Ls, Bs, part_4_out_gaaa4(X, Xs, Ls, Bs)) -> part_4_out_gaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_part_4_in_2_gaaa6(X, Y, Xs, Ls, Bs, part_4_out_gaaa4(X, Xs, Ls, Bs)) -> part_4_out_gaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
if_part_4_in_2_aaaa6(X, Y, Xs, Ls, Bs, part_4_out_gaaa4(X, Xs, Ls, Bs)) -> part_4_out_aaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
part_4_in_aaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_aaaa6(X, Y, Xs, Ls, Bs, part_4_in_aaaa4(X, Xs, Ls, Bs))
part_4_in_aaaa4(underscore, []_0, []_0, []_0) -> part_4_out_aaaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_aaaa6(X, Y, Xs, Ls, Bs, part_4_out_aaaa4(X, Xs, Ls, Bs)) -> part_4_out_aaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_qs_2_in_1_ag4(X, Xs, Ys, part_4_out_aaaa4(X, Xs, Littles, Bigs)) -> if_qs_2_in_2_ag6(X, Xs, Ys, Littles, Bigs, qs_2_in_ga2(Littles, Ls))
qs_2_in_ga2([]_0, []_0) -> qs_2_out_ga2([]_0, []_0)
qs_2_in_ga2(._22(X, Xs), Ys) -> if_qs_2_in_1_ga4(X, Xs, Ys, part_4_in_agaa4(X, Xs, Littles, Bigs))
part_4_in_agaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_agaa6(X, Y, Xs, Ls, Bs, less_2_in_aa2(X, Y))
if_part_4_in_1_agaa6(X, Y, Xs, Ls, Bs, less_2_out_aa2(X, Y)) -> if_part_4_in_2_agaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_ggaa6(X, Y, Xs, Ls, Bs, less_2_in_ga2(X, Y))
if_part_4_in_1_ggaa6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> if_part_4_in_2_ggaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_ggaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(underscore, []_0, []_0, []_0) -> part_4_out_ggaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_ggaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_ggaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_part_4_in_2_ggaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_ggaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
if_part_4_in_2_agaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_agaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
part_4_in_agaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_agaa6(X, Y, Xs, Ls, Bs, part_4_in_agaa4(X, Xs, Ls, Bs))
part_4_in_agaa4(underscore, []_0, []_0, []_0) -> part_4_out_agaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_agaa6(X, Y, Xs, Ls, Bs, part_4_out_agaa4(X, Xs, Ls, Bs)) -> part_4_out_agaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_qs_2_in_1_ga4(X, Xs, Ys, part_4_out_agaa4(X, Xs, Littles, Bigs)) -> if_qs_2_in_2_ga6(X, Xs, Ys, Littles, Bigs, qs_2_in_ga2(Littles, Ls))
if_qs_2_in_2_ga6(X, Xs, Ys, Littles, Bigs, qs_2_out_ga2(Littles, Ls)) -> if_qs_2_in_3_ga6(X, Xs, Ys, Bigs, Ls, qs_2_in_ga2(Bigs, Bs))
if_qs_2_in_3_ga6(X, Xs, Ys, Bigs, Ls, qs_2_out_ga2(Bigs, Bs)) -> if_qs_2_in_4_ga6(X, Xs, Ys, Ls, Bs, app_3_in_gga3(Ls, ._22(X, Bs), Ys))
app_3_in_gga3([]_0, X, X) -> app_3_out_gga3([]_0, X, X)
app_3_in_gga3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_gga5(X, Xs, Ys, Zs, app_3_in_gga3(Xs, Ys, Zs))
if_app_3_in_1_gga5(X, Xs, Ys, Zs, app_3_out_gga3(Xs, Ys, Zs)) -> app_3_out_gga3(._22(X, Xs), Ys, ._22(X, Zs))
if_qs_2_in_4_ga6(X, Xs, Ys, Ls, Bs, app_3_out_gga3(Ls, ._22(X, Bs), Ys)) -> qs_2_out_ga2(._22(X, Xs), Ys)
if_qs_2_in_2_ag6(X, Xs, Ys, Littles, Bigs, qs_2_out_ga2(Littles, Ls)) -> if_qs_2_in_3_ag6(X, Xs, Ys, Bigs, Ls, qs_2_in_ga2(Bigs, Bs))
if_qs_2_in_3_ag6(X, Xs, Ys, Bigs, Ls, qs_2_out_ga2(Bigs, Bs)) -> if_qs_2_in_4_ag6(X, Xs, Ys, Ls, Bs, app_3_in_ggg3(Ls, ._22(X, Bs), Ys))
app_3_in_ggg3([]_0, X, X) -> app_3_out_ggg3([]_0, X, X)
app_3_in_ggg3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_ggg5(X, Xs, Ys, Zs, app_3_in_ggg3(Xs, Ys, Zs))
if_app_3_in_1_ggg5(X, Xs, Ys, Zs, app_3_out_ggg3(Xs, Ys, Zs)) -> app_3_out_ggg3(._22(X, Xs), Ys, ._22(X, Zs))
if_qs_2_in_4_ag6(X, Xs, Ys, Ls, Bs, app_3_out_ggg3(Ls, ._22(X, Bs), Ys)) -> qs_2_out_ag2(._22(X, Xs), Ys)

The argument filtering Pi contains the following mapping:
qs_2_in_ag2(x1, x2)  =  qs_2_in_ag1(x2)
[]_0  =  []_0
._22(x1, x2)  =  ._21(x2)
0_0  =  0_0
s_11(x1)  =  s_1
qs_2_out_ag2(x1, x2)  =  qs_2_out_ag2(x1, x2)
if_qs_2_in_1_ag4(x1, x2, x3, x4)  =  if_qs_2_in_1_ag2(x3, x4)
part_4_in_aaaa4(x1, x2, x3, x4)  =  part_4_in_aaaa
if_part_4_in_1_aaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_aaaa1(x6)
less_2_in_aa2(x1, x2)  =  less_2_in_aa
less_2_out_aa2(x1, x2)  =  less_2_out_aa2(x1, x2)
if_less_2_in_1_aa3(x1, x2, x3)  =  if_less_2_in_1_aa1(x3)
if_part_4_in_2_aaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_aaaa1(x6)
part_4_in_gaaa4(x1, x2, x3, x4)  =  part_4_in_gaaa1(x1)
if_part_4_in_1_gaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_gaaa2(x1, x6)
less_2_in_ga2(x1, x2)  =  less_2_in_ga1(x1)
less_2_out_ga2(x1, x2)  =  less_2_out_ga2(x1, x2)
if_less_2_in_1_ga3(x1, x2, x3)  =  if_less_2_in_1_ga1(x3)
if_part_4_in_2_gaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_gaaa2(x1, x6)
if_part_4_in_3_gaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_gaaa2(x1, x6)
part_4_out_gaaa4(x1, x2, x3, x4)  =  part_4_out_gaaa4(x1, x2, x3, x4)
part_4_out_aaaa4(x1, x2, x3, x4)  =  part_4_out_aaaa3(x2, x3, x4)
if_part_4_in_3_aaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_aaaa1(x6)
if_qs_2_in_2_ag6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_2_ag4(x2, x3, x5, x6)
qs_2_in_ga2(x1, x2)  =  qs_2_in_ga1(x1)
qs_2_out_ga2(x1, x2)  =  qs_2_out_ga2(x1, x2)
if_qs_2_in_1_ga4(x1, x2, x3, x4)  =  if_qs_2_in_1_ga2(x2, x4)
part_4_in_agaa4(x1, x2, x3, x4)  =  part_4_in_agaa1(x2)
if_part_4_in_1_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_agaa2(x3, x6)
if_part_4_in_2_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_agaa2(x3, x6)
part_4_in_ggaa4(x1, x2, x3, x4)  =  part_4_in_ggaa2(x1, x2)
if_part_4_in_1_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_ggaa3(x1, x3, x6)
if_part_4_in_2_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_ggaa3(x1, x3, x6)
if_part_4_in_3_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_ggaa3(x1, x3, x6)
part_4_out_ggaa4(x1, x2, x3, x4)  =  part_4_out_ggaa4(x1, x2, x3, x4)
part_4_out_agaa4(x1, x2, x3, x4)  =  part_4_out_agaa3(x2, x3, x4)
if_part_4_in_3_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_agaa2(x3, x6)
if_qs_2_in_2_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_2_ga3(x2, x5, x6)
if_qs_2_in_3_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_3_ga3(x2, x5, x6)
if_qs_2_in_4_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_4_ga2(x2, x6)
app_3_in_gga3(x1, x2, x3)  =  app_3_in_gga2(x1, x2)
app_3_out_gga3(x1, x2, x3)  =  app_3_out_gga3(x1, x2, x3)
if_app_3_in_1_gga5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_gga3(x2, x3, x5)
if_qs_2_in_3_ag6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_3_ag4(x2, x3, x5, x6)
if_qs_2_in_4_ag6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_4_ag3(x2, x3, x6)
app_3_in_ggg3(x1, x2, x3)  =  app_3_in_ggg3(x1, x2, x3)
app_3_out_ggg3(x1, x2, x3)  =  app_3_out_ggg3(x1, x2, x3)
if_app_3_in_1_ggg5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_ggg4(x2, x3, x4, x5)
IF_PART_4_IN_1_AAAA6(x1, x2, x3, x4, x5, x6)  =  IF_PART_4_IN_1_AAAA1(x6)
LESS_2_IN_GA2(x1, x2)  =  LESS_2_IN_GA1(x1)
PART_4_IN_AAAA4(x1, x2, x3, x4)  =  PART_4_IN_AAAA
PART_4_IN_GGAA4(x1, x2, x3, x4)  =  PART_4_IN_GGAA2(x1, x2)
IF_PART_4_IN_3_AAAA6(x1, x2, x3, x4, x5, x6)  =  IF_PART_4_IN_3_AAAA1(x6)
APP_3_IN_GGA3(x1, x2, x3)  =  APP_3_IN_GGA2(x1, x2)
IF_PART_4_IN_1_AGAA6(x1, x2, x3, x4, x5, x6)  =  IF_PART_4_IN_1_AGAA2(x3, x6)
QS_2_IN_AG2(x1, x2)  =  QS_2_IN_AG1(x2)
IF_LESS_2_IN_1_GA3(x1, x2, x3)  =  IF_LESS_2_IN_1_GA1(x3)
IF_PART_4_IN_1_GGAA6(x1, x2, x3, x4, x5, x6)  =  IF_PART_4_IN_1_GGAA3(x1, x3, x6)
IF_QS_2_IN_2_GA6(x1, x2, x3, x4, x5, x6)  =  IF_QS_2_IN_2_GA3(x2, x5, x6)
LESS_2_IN_AA2(x1, x2)  =  LESS_2_IN_AA
QS_2_IN_GA2(x1, x2)  =  QS_2_IN_GA1(x1)
IF_QS_2_IN_4_GA6(x1, x2, x3, x4, x5, x6)  =  IF_QS_2_IN_4_GA2(x2, x6)
IF_PART_4_IN_2_AGAA6(x1, x2, x3, x4, x5, x6)  =  IF_PART_4_IN_2_AGAA2(x3, x6)
IF_PART_4_IN_3_GGAA6(x1, x2, x3, x4, x5, x6)  =  IF_PART_4_IN_3_GGAA3(x1, x3, x6)
APP_3_IN_GGG3(x1, x2, x3)  =  APP_3_IN_GGG3(x1, x2, x3)
PART_4_IN_AGAA4(x1, x2, x3, x4)  =  PART_4_IN_AGAA1(x2)
IF_QS_2_IN_3_AG6(x1, x2, x3, x4, x5, x6)  =  IF_QS_2_IN_3_AG4(x2, x3, x5, x6)
IF_QS_2_IN_3_GA6(x1, x2, x3, x4, x5, x6)  =  IF_QS_2_IN_3_GA3(x2, x5, x6)
IF_QS_2_IN_1_GA4(x1, x2, x3, x4)  =  IF_QS_2_IN_1_GA2(x2, x4)
IF_APP_3_IN_1_GGG5(x1, x2, x3, x4, x5)  =  IF_APP_3_IN_1_GGG4(x2, x3, x4, x5)
IF_LESS_2_IN_1_AA3(x1, x2, x3)  =  IF_LESS_2_IN_1_AA1(x3)
PART_4_IN_GAAA4(x1, x2, x3, x4)  =  PART_4_IN_GAAA1(x1)
IF_QS_2_IN_2_AG6(x1, x2, x3, x4, x5, x6)  =  IF_QS_2_IN_2_AG4(x2, x3, x5, x6)
IF_PART_4_IN_1_GAAA6(x1, x2, x3, x4, x5, x6)  =  IF_PART_4_IN_1_GAAA2(x1, x6)
IF_QS_2_IN_4_AG6(x1, x2, x3, x4, x5, x6)  =  IF_QS_2_IN_4_AG3(x2, x3, x6)
IF_APP_3_IN_1_GGA5(x1, x2, x3, x4, x5)  =  IF_APP_3_IN_1_GGA3(x2, x3, x5)
IF_PART_4_IN_3_GAAA6(x1, x2, x3, x4, x5, x6)  =  IF_PART_4_IN_3_GAAA2(x1, x6)
IF_PART_4_IN_2_GGAA6(x1, x2, x3, x4, x5, x6)  =  IF_PART_4_IN_2_GGAA3(x1, x3, x6)
IF_PART_4_IN_3_AGAA6(x1, x2, x3, x4, x5, x6)  =  IF_PART_4_IN_3_AGAA2(x3, x6)
IF_QS_2_IN_1_AG4(x1, x2, x3, x4)  =  IF_QS_2_IN_1_AG2(x3, x4)
IF_PART_4_IN_2_AAAA6(x1, x2, x3, x4, x5, x6)  =  IF_PART_4_IN_2_AAAA1(x6)
IF_PART_4_IN_2_GAAA6(x1, x2, x3, x4, x5, x6)  =  IF_PART_4_IN_2_GAAA2(x1, x6)

We have to consider all (P,R,Pi)-chains

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
PiDP
          ↳ DependencyGraphProof

Pi DP problem:
The TRS P consists of the following rules:

QS_2_IN_AG2(._22(X, Xs), Ys) -> IF_QS_2_IN_1_AG4(X, Xs, Ys, part_4_in_aaaa4(X, Xs, Littles, Bigs))
QS_2_IN_AG2(._22(X, Xs), Ys) -> PART_4_IN_AAAA4(X, Xs, Littles, Bigs)
PART_4_IN_AAAA4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> IF_PART_4_IN_1_AAAA6(X, Y, Xs, Ls, Bs, less_2_in_aa2(X, Y))
PART_4_IN_AAAA4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> LESS_2_IN_AA2(X, Y)
LESS_2_IN_AA2(s_11(X), s_11(Y)) -> IF_LESS_2_IN_1_AA3(X, Y, less_2_in_aa2(X, Y))
LESS_2_IN_AA2(s_11(X), s_11(Y)) -> LESS_2_IN_AA2(X, Y)
IF_PART_4_IN_1_AAAA6(X, Y, Xs, Ls, Bs, less_2_out_aa2(X, Y)) -> IF_PART_4_IN_2_AAAA6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
IF_PART_4_IN_1_AAAA6(X, Y, Xs, Ls, Bs, less_2_out_aa2(X, Y)) -> PART_4_IN_GAAA4(X, Xs, Ls, Bs)
PART_4_IN_GAAA4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> IF_PART_4_IN_1_GAAA6(X, Y, Xs, Ls, Bs, less_2_in_ga2(X, Y))
PART_4_IN_GAAA4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> LESS_2_IN_GA2(X, Y)
LESS_2_IN_GA2(s_11(X), s_11(Y)) -> IF_LESS_2_IN_1_GA3(X, Y, less_2_in_aa2(X, Y))
LESS_2_IN_GA2(s_11(X), s_11(Y)) -> LESS_2_IN_AA2(X, Y)
IF_PART_4_IN_1_GAAA6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> IF_PART_4_IN_2_GAAA6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
IF_PART_4_IN_1_GAAA6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> PART_4_IN_GAAA4(X, Xs, Ls, Bs)
PART_4_IN_GAAA4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> IF_PART_4_IN_3_GAAA6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
PART_4_IN_GAAA4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> PART_4_IN_GAAA4(X, Xs, Ls, Bs)
PART_4_IN_AAAA4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> IF_PART_4_IN_3_AAAA6(X, Y, Xs, Ls, Bs, part_4_in_aaaa4(X, Xs, Ls, Bs))
PART_4_IN_AAAA4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> PART_4_IN_AAAA4(X, Xs, Ls, Bs)
IF_QS_2_IN_1_AG4(X, Xs, Ys, part_4_out_aaaa4(X, Xs, Littles, Bigs)) -> IF_QS_2_IN_2_AG6(X, Xs, Ys, Littles, Bigs, qs_2_in_ga2(Littles, Ls))
IF_QS_2_IN_1_AG4(X, Xs, Ys, part_4_out_aaaa4(X, Xs, Littles, Bigs)) -> QS_2_IN_GA2(Littles, Ls)
QS_2_IN_GA2(._22(X, Xs), Ys) -> IF_QS_2_IN_1_GA4(X, Xs, Ys, part_4_in_agaa4(X, Xs, Littles, Bigs))
QS_2_IN_GA2(._22(X, Xs), Ys) -> PART_4_IN_AGAA4(X, Xs, Littles, Bigs)
PART_4_IN_AGAA4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> IF_PART_4_IN_1_AGAA6(X, Y, Xs, Ls, Bs, less_2_in_aa2(X, Y))
PART_4_IN_AGAA4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> LESS_2_IN_AA2(X, Y)
IF_PART_4_IN_1_AGAA6(X, Y, Xs, Ls, Bs, less_2_out_aa2(X, Y)) -> IF_PART_4_IN_2_AGAA6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
IF_PART_4_IN_1_AGAA6(X, Y, Xs, Ls, Bs, less_2_out_aa2(X, Y)) -> PART_4_IN_GGAA4(X, Xs, Ls, Bs)
PART_4_IN_GGAA4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> IF_PART_4_IN_1_GGAA6(X, Y, Xs, Ls, Bs, less_2_in_ga2(X, Y))
PART_4_IN_GGAA4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> LESS_2_IN_GA2(X, Y)
IF_PART_4_IN_1_GGAA6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> IF_PART_4_IN_2_GGAA6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
IF_PART_4_IN_1_GGAA6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> PART_4_IN_GGAA4(X, Xs, Ls, Bs)
PART_4_IN_GGAA4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> IF_PART_4_IN_3_GGAA6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
PART_4_IN_GGAA4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> PART_4_IN_GGAA4(X, Xs, Ls, Bs)
PART_4_IN_AGAA4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> IF_PART_4_IN_3_AGAA6(X, Y, Xs, Ls, Bs, part_4_in_agaa4(X, Xs, Ls, Bs))
PART_4_IN_AGAA4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> PART_4_IN_AGAA4(X, Xs, Ls, Bs)
IF_QS_2_IN_1_GA4(X, Xs, Ys, part_4_out_agaa4(X, Xs, Littles, Bigs)) -> IF_QS_2_IN_2_GA6(X, Xs, Ys, Littles, Bigs, qs_2_in_ga2(Littles, Ls))
IF_QS_2_IN_1_GA4(X, Xs, Ys, part_4_out_agaa4(X, Xs, Littles, Bigs)) -> QS_2_IN_GA2(Littles, Ls)
IF_QS_2_IN_2_GA6(X, Xs, Ys, Littles, Bigs, qs_2_out_ga2(Littles, Ls)) -> IF_QS_2_IN_3_GA6(X, Xs, Ys, Bigs, Ls, qs_2_in_ga2(Bigs, Bs))
IF_QS_2_IN_2_GA6(X, Xs, Ys, Littles, Bigs, qs_2_out_ga2(Littles, Ls)) -> QS_2_IN_GA2(Bigs, Bs)
IF_QS_2_IN_3_GA6(X, Xs, Ys, Bigs, Ls, qs_2_out_ga2(Bigs, Bs)) -> IF_QS_2_IN_4_GA6(X, Xs, Ys, Ls, Bs, app_3_in_gga3(Ls, ._22(X, Bs), Ys))
IF_QS_2_IN_3_GA6(X, Xs, Ys, Bigs, Ls, qs_2_out_ga2(Bigs, Bs)) -> APP_3_IN_GGA3(Ls, ._22(X, Bs), Ys)
APP_3_IN_GGA3(._22(X, Xs), Ys, ._22(X, Zs)) -> IF_APP_3_IN_1_GGA5(X, Xs, Ys, Zs, app_3_in_gga3(Xs, Ys, Zs))
APP_3_IN_GGA3(._22(X, Xs), Ys, ._22(X, Zs)) -> APP_3_IN_GGA3(Xs, Ys, Zs)
IF_QS_2_IN_2_AG6(X, Xs, Ys, Littles, Bigs, qs_2_out_ga2(Littles, Ls)) -> IF_QS_2_IN_3_AG6(X, Xs, Ys, Bigs, Ls, qs_2_in_ga2(Bigs, Bs))
IF_QS_2_IN_2_AG6(X, Xs, Ys, Littles, Bigs, qs_2_out_ga2(Littles, Ls)) -> QS_2_IN_GA2(Bigs, Bs)
IF_QS_2_IN_3_AG6(X, Xs, Ys, Bigs, Ls, qs_2_out_ga2(Bigs, Bs)) -> IF_QS_2_IN_4_AG6(X, Xs, Ys, Ls, Bs, app_3_in_ggg3(Ls, ._22(X, Bs), Ys))
IF_QS_2_IN_3_AG6(X, Xs, Ys, Bigs, Ls, qs_2_out_ga2(Bigs, Bs)) -> APP_3_IN_GGG3(Ls, ._22(X, Bs), Ys)
APP_3_IN_GGG3(._22(X, Xs), Ys, ._22(X, Zs)) -> IF_APP_3_IN_1_GGG5(X, Xs, Ys, Zs, app_3_in_ggg3(Xs, Ys, Zs))
APP_3_IN_GGG3(._22(X, Xs), Ys, ._22(X, Zs)) -> APP_3_IN_GGG3(Xs, Ys, Zs)

The TRS R consists of the following rules:

qs_2_in_ag2([]_0, []_0) -> qs_2_out_ag2([]_0, []_0)
qs_2_in_ag2(._22(X, Xs), Ys) -> if_qs_2_in_1_ag4(X, Xs, Ys, part_4_in_aaaa4(X, Xs, Littles, Bigs))
part_4_in_aaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_aaaa6(X, Y, Xs, Ls, Bs, less_2_in_aa2(X, Y))
less_2_in_aa2(0_0, s_11(underscore1)) -> less_2_out_aa2(0_0, s_11(underscore1))
less_2_in_aa2(s_11(X), s_11(Y)) -> if_less_2_in_1_aa3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_aa3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_aa2(s_11(X), s_11(Y))
if_part_4_in_1_aaaa6(X, Y, Xs, Ls, Bs, less_2_out_aa2(X, Y)) -> if_part_4_in_2_aaaa6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
part_4_in_gaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_gaaa6(X, Y, Xs, Ls, Bs, less_2_in_ga2(X, Y))
less_2_in_ga2(0_0, s_11(underscore1)) -> less_2_out_ga2(0_0, s_11(underscore1))
less_2_in_ga2(s_11(X), s_11(Y)) -> if_less_2_in_1_ga3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_ga3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_ga2(s_11(X), s_11(Y))
if_part_4_in_1_gaaa6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> if_part_4_in_2_gaaa6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
part_4_in_gaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_gaaa6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
part_4_in_gaaa4(underscore, []_0, []_0, []_0) -> part_4_out_gaaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_gaaa6(X, Y, Xs, Ls, Bs, part_4_out_gaaa4(X, Xs, Ls, Bs)) -> part_4_out_gaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_part_4_in_2_gaaa6(X, Y, Xs, Ls, Bs, part_4_out_gaaa4(X, Xs, Ls, Bs)) -> part_4_out_gaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
if_part_4_in_2_aaaa6(X, Y, Xs, Ls, Bs, part_4_out_gaaa4(X, Xs, Ls, Bs)) -> part_4_out_aaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
part_4_in_aaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_aaaa6(X, Y, Xs, Ls, Bs, part_4_in_aaaa4(X, Xs, Ls, Bs))
part_4_in_aaaa4(underscore, []_0, []_0, []_0) -> part_4_out_aaaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_aaaa6(X, Y, Xs, Ls, Bs, part_4_out_aaaa4(X, Xs, Ls, Bs)) -> part_4_out_aaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_qs_2_in_1_ag4(X, Xs, Ys, part_4_out_aaaa4(X, Xs, Littles, Bigs)) -> if_qs_2_in_2_ag6(X, Xs, Ys, Littles, Bigs, qs_2_in_ga2(Littles, Ls))
qs_2_in_ga2([]_0, []_0) -> qs_2_out_ga2([]_0, []_0)
qs_2_in_ga2(._22(X, Xs), Ys) -> if_qs_2_in_1_ga4(X, Xs, Ys, part_4_in_agaa4(X, Xs, Littles, Bigs))
part_4_in_agaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_agaa6(X, Y, Xs, Ls, Bs, less_2_in_aa2(X, Y))
if_part_4_in_1_agaa6(X, Y, Xs, Ls, Bs, less_2_out_aa2(X, Y)) -> if_part_4_in_2_agaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_ggaa6(X, Y, Xs, Ls, Bs, less_2_in_ga2(X, Y))
if_part_4_in_1_ggaa6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> if_part_4_in_2_ggaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_ggaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(underscore, []_0, []_0, []_0) -> part_4_out_ggaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_ggaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_ggaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_part_4_in_2_ggaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_ggaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
if_part_4_in_2_agaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_agaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
part_4_in_agaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_agaa6(X, Y, Xs, Ls, Bs, part_4_in_agaa4(X, Xs, Ls, Bs))
part_4_in_agaa4(underscore, []_0, []_0, []_0) -> part_4_out_agaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_agaa6(X, Y, Xs, Ls, Bs, part_4_out_agaa4(X, Xs, Ls, Bs)) -> part_4_out_agaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_qs_2_in_1_ga4(X, Xs, Ys, part_4_out_agaa4(X, Xs, Littles, Bigs)) -> if_qs_2_in_2_ga6(X, Xs, Ys, Littles, Bigs, qs_2_in_ga2(Littles, Ls))
if_qs_2_in_2_ga6(X, Xs, Ys, Littles, Bigs, qs_2_out_ga2(Littles, Ls)) -> if_qs_2_in_3_ga6(X, Xs, Ys, Bigs, Ls, qs_2_in_ga2(Bigs, Bs))
if_qs_2_in_3_ga6(X, Xs, Ys, Bigs, Ls, qs_2_out_ga2(Bigs, Bs)) -> if_qs_2_in_4_ga6(X, Xs, Ys, Ls, Bs, app_3_in_gga3(Ls, ._22(X, Bs), Ys))
app_3_in_gga3([]_0, X, X) -> app_3_out_gga3([]_0, X, X)
app_3_in_gga3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_gga5(X, Xs, Ys, Zs, app_3_in_gga3(Xs, Ys, Zs))
if_app_3_in_1_gga5(X, Xs, Ys, Zs, app_3_out_gga3(Xs, Ys, Zs)) -> app_3_out_gga3(._22(X, Xs), Ys, ._22(X, Zs))
if_qs_2_in_4_ga6(X, Xs, Ys, Ls, Bs, app_3_out_gga3(Ls, ._22(X, Bs), Ys)) -> qs_2_out_ga2(._22(X, Xs), Ys)
if_qs_2_in_2_ag6(X, Xs, Ys, Littles, Bigs, qs_2_out_ga2(Littles, Ls)) -> if_qs_2_in_3_ag6(X, Xs, Ys, Bigs, Ls, qs_2_in_ga2(Bigs, Bs))
if_qs_2_in_3_ag6(X, Xs, Ys, Bigs, Ls, qs_2_out_ga2(Bigs, Bs)) -> if_qs_2_in_4_ag6(X, Xs, Ys, Ls, Bs, app_3_in_ggg3(Ls, ._22(X, Bs), Ys))
app_3_in_ggg3([]_0, X, X) -> app_3_out_ggg3([]_0, X, X)
app_3_in_ggg3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_ggg5(X, Xs, Ys, Zs, app_3_in_ggg3(Xs, Ys, Zs))
if_app_3_in_1_ggg5(X, Xs, Ys, Zs, app_3_out_ggg3(Xs, Ys, Zs)) -> app_3_out_ggg3(._22(X, Xs), Ys, ._22(X, Zs))
if_qs_2_in_4_ag6(X, Xs, Ys, Ls, Bs, app_3_out_ggg3(Ls, ._22(X, Bs), Ys)) -> qs_2_out_ag2(._22(X, Xs), Ys)

The argument filtering Pi contains the following mapping:
qs_2_in_ag2(x1, x2)  =  qs_2_in_ag1(x2)
[]_0  =  []_0
._22(x1, x2)  =  ._21(x2)
0_0  =  0_0
s_11(x1)  =  s_1
qs_2_out_ag2(x1, x2)  =  qs_2_out_ag2(x1, x2)
if_qs_2_in_1_ag4(x1, x2, x3, x4)  =  if_qs_2_in_1_ag2(x3, x4)
part_4_in_aaaa4(x1, x2, x3, x4)  =  part_4_in_aaaa
if_part_4_in_1_aaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_aaaa1(x6)
less_2_in_aa2(x1, x2)  =  less_2_in_aa
less_2_out_aa2(x1, x2)  =  less_2_out_aa2(x1, x2)
if_less_2_in_1_aa3(x1, x2, x3)  =  if_less_2_in_1_aa1(x3)
if_part_4_in_2_aaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_aaaa1(x6)
part_4_in_gaaa4(x1, x2, x3, x4)  =  part_4_in_gaaa1(x1)
if_part_4_in_1_gaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_gaaa2(x1, x6)
less_2_in_ga2(x1, x2)  =  less_2_in_ga1(x1)
less_2_out_ga2(x1, x2)  =  less_2_out_ga2(x1, x2)
if_less_2_in_1_ga3(x1, x2, x3)  =  if_less_2_in_1_ga1(x3)
if_part_4_in_2_gaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_gaaa2(x1, x6)
if_part_4_in_3_gaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_gaaa2(x1, x6)
part_4_out_gaaa4(x1, x2, x3, x4)  =  part_4_out_gaaa4(x1, x2, x3, x4)
part_4_out_aaaa4(x1, x2, x3, x4)  =  part_4_out_aaaa3(x2, x3, x4)
if_part_4_in_3_aaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_aaaa1(x6)
if_qs_2_in_2_ag6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_2_ag4(x2, x3, x5, x6)
qs_2_in_ga2(x1, x2)  =  qs_2_in_ga1(x1)
qs_2_out_ga2(x1, x2)  =  qs_2_out_ga2(x1, x2)
if_qs_2_in_1_ga4(x1, x2, x3, x4)  =  if_qs_2_in_1_ga2(x2, x4)
part_4_in_agaa4(x1, x2, x3, x4)  =  part_4_in_agaa1(x2)
if_part_4_in_1_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_agaa2(x3, x6)
if_part_4_in_2_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_agaa2(x3, x6)
part_4_in_ggaa4(x1, x2, x3, x4)  =  part_4_in_ggaa2(x1, x2)
if_part_4_in_1_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_ggaa3(x1, x3, x6)
if_part_4_in_2_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_ggaa3(x1, x3, x6)
if_part_4_in_3_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_ggaa3(x1, x3, x6)
part_4_out_ggaa4(x1, x2, x3, x4)  =  part_4_out_ggaa4(x1, x2, x3, x4)
part_4_out_agaa4(x1, x2, x3, x4)  =  part_4_out_agaa3(x2, x3, x4)
if_part_4_in_3_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_agaa2(x3, x6)
if_qs_2_in_2_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_2_ga3(x2, x5, x6)
if_qs_2_in_3_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_3_ga3(x2, x5, x6)
if_qs_2_in_4_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_4_ga2(x2, x6)
app_3_in_gga3(x1, x2, x3)  =  app_3_in_gga2(x1, x2)
app_3_out_gga3(x1, x2, x3)  =  app_3_out_gga3(x1, x2, x3)
if_app_3_in_1_gga5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_gga3(x2, x3, x5)
if_qs_2_in_3_ag6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_3_ag4(x2, x3, x5, x6)
if_qs_2_in_4_ag6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_4_ag3(x2, x3, x6)
app_3_in_ggg3(x1, x2, x3)  =  app_3_in_ggg3(x1, x2, x3)
app_3_out_ggg3(x1, x2, x3)  =  app_3_out_ggg3(x1, x2, x3)
if_app_3_in_1_ggg5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_ggg4(x2, x3, x4, x5)
IF_PART_4_IN_1_AAAA6(x1, x2, x3, x4, x5, x6)  =  IF_PART_4_IN_1_AAAA1(x6)
LESS_2_IN_GA2(x1, x2)  =  LESS_2_IN_GA1(x1)
PART_4_IN_AAAA4(x1, x2, x3, x4)  =  PART_4_IN_AAAA
PART_4_IN_GGAA4(x1, x2, x3, x4)  =  PART_4_IN_GGAA2(x1, x2)
IF_PART_4_IN_3_AAAA6(x1, x2, x3, x4, x5, x6)  =  IF_PART_4_IN_3_AAAA1(x6)
APP_3_IN_GGA3(x1, x2, x3)  =  APP_3_IN_GGA2(x1, x2)
IF_PART_4_IN_1_AGAA6(x1, x2, x3, x4, x5, x6)  =  IF_PART_4_IN_1_AGAA2(x3, x6)
QS_2_IN_AG2(x1, x2)  =  QS_2_IN_AG1(x2)
IF_LESS_2_IN_1_GA3(x1, x2, x3)  =  IF_LESS_2_IN_1_GA1(x3)
IF_PART_4_IN_1_GGAA6(x1, x2, x3, x4, x5, x6)  =  IF_PART_4_IN_1_GGAA3(x1, x3, x6)
IF_QS_2_IN_2_GA6(x1, x2, x3, x4, x5, x6)  =  IF_QS_2_IN_2_GA3(x2, x5, x6)
LESS_2_IN_AA2(x1, x2)  =  LESS_2_IN_AA
QS_2_IN_GA2(x1, x2)  =  QS_2_IN_GA1(x1)
IF_QS_2_IN_4_GA6(x1, x2, x3, x4, x5, x6)  =  IF_QS_2_IN_4_GA2(x2, x6)
IF_PART_4_IN_2_AGAA6(x1, x2, x3, x4, x5, x6)  =  IF_PART_4_IN_2_AGAA2(x3, x6)
IF_PART_4_IN_3_GGAA6(x1, x2, x3, x4, x5, x6)  =  IF_PART_4_IN_3_GGAA3(x1, x3, x6)
APP_3_IN_GGG3(x1, x2, x3)  =  APP_3_IN_GGG3(x1, x2, x3)
PART_4_IN_AGAA4(x1, x2, x3, x4)  =  PART_4_IN_AGAA1(x2)
IF_QS_2_IN_3_AG6(x1, x2, x3, x4, x5, x6)  =  IF_QS_2_IN_3_AG4(x2, x3, x5, x6)
IF_QS_2_IN_3_GA6(x1, x2, x3, x4, x5, x6)  =  IF_QS_2_IN_3_GA3(x2, x5, x6)
IF_QS_2_IN_1_GA4(x1, x2, x3, x4)  =  IF_QS_2_IN_1_GA2(x2, x4)
IF_APP_3_IN_1_GGG5(x1, x2, x3, x4, x5)  =  IF_APP_3_IN_1_GGG4(x2, x3, x4, x5)
IF_LESS_2_IN_1_AA3(x1, x2, x3)  =  IF_LESS_2_IN_1_AA1(x3)
PART_4_IN_GAAA4(x1, x2, x3, x4)  =  PART_4_IN_GAAA1(x1)
IF_QS_2_IN_2_AG6(x1, x2, x3, x4, x5, x6)  =  IF_QS_2_IN_2_AG4(x2, x3, x5, x6)
IF_PART_4_IN_1_GAAA6(x1, x2, x3, x4, x5, x6)  =  IF_PART_4_IN_1_GAAA2(x1, x6)
IF_QS_2_IN_4_AG6(x1, x2, x3, x4, x5, x6)  =  IF_QS_2_IN_4_AG3(x2, x3, x6)
IF_APP_3_IN_1_GGA5(x1, x2, x3, x4, x5)  =  IF_APP_3_IN_1_GGA3(x2, x3, x5)
IF_PART_4_IN_3_GAAA6(x1, x2, x3, x4, x5, x6)  =  IF_PART_4_IN_3_GAAA2(x1, x6)
IF_PART_4_IN_2_GGAA6(x1, x2, x3, x4, x5, x6)  =  IF_PART_4_IN_2_GGAA3(x1, x3, x6)
IF_PART_4_IN_3_AGAA6(x1, x2, x3, x4, x5, x6)  =  IF_PART_4_IN_3_AGAA2(x3, x6)
IF_QS_2_IN_1_AG4(x1, x2, x3, x4)  =  IF_QS_2_IN_1_AG2(x3, x4)
IF_PART_4_IN_2_AAAA6(x1, x2, x3, x4, x5, x6)  =  IF_PART_4_IN_2_AAAA1(x6)
IF_PART_4_IN_2_GAAA6(x1, x2, x3, x4, x5, x6)  =  IF_PART_4_IN_2_GAAA2(x1, x6)

We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph contains 8 SCCs with 33 less nodes.

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
PiDP
                ↳ UsableRulesProof
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

APP_3_IN_GGG3(._22(X, Xs), Ys, ._22(X, Zs)) -> APP_3_IN_GGG3(Xs, Ys, Zs)

The TRS R consists of the following rules:

qs_2_in_ag2([]_0, []_0) -> qs_2_out_ag2([]_0, []_0)
qs_2_in_ag2(._22(X, Xs), Ys) -> if_qs_2_in_1_ag4(X, Xs, Ys, part_4_in_aaaa4(X, Xs, Littles, Bigs))
part_4_in_aaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_aaaa6(X, Y, Xs, Ls, Bs, less_2_in_aa2(X, Y))
less_2_in_aa2(0_0, s_11(underscore1)) -> less_2_out_aa2(0_0, s_11(underscore1))
less_2_in_aa2(s_11(X), s_11(Y)) -> if_less_2_in_1_aa3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_aa3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_aa2(s_11(X), s_11(Y))
if_part_4_in_1_aaaa6(X, Y, Xs, Ls, Bs, less_2_out_aa2(X, Y)) -> if_part_4_in_2_aaaa6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
part_4_in_gaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_gaaa6(X, Y, Xs, Ls, Bs, less_2_in_ga2(X, Y))
less_2_in_ga2(0_0, s_11(underscore1)) -> less_2_out_ga2(0_0, s_11(underscore1))
less_2_in_ga2(s_11(X), s_11(Y)) -> if_less_2_in_1_ga3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_ga3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_ga2(s_11(X), s_11(Y))
if_part_4_in_1_gaaa6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> if_part_4_in_2_gaaa6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
part_4_in_gaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_gaaa6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
part_4_in_gaaa4(underscore, []_0, []_0, []_0) -> part_4_out_gaaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_gaaa6(X, Y, Xs, Ls, Bs, part_4_out_gaaa4(X, Xs, Ls, Bs)) -> part_4_out_gaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_part_4_in_2_gaaa6(X, Y, Xs, Ls, Bs, part_4_out_gaaa4(X, Xs, Ls, Bs)) -> part_4_out_gaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
if_part_4_in_2_aaaa6(X, Y, Xs, Ls, Bs, part_4_out_gaaa4(X, Xs, Ls, Bs)) -> part_4_out_aaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
part_4_in_aaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_aaaa6(X, Y, Xs, Ls, Bs, part_4_in_aaaa4(X, Xs, Ls, Bs))
part_4_in_aaaa4(underscore, []_0, []_0, []_0) -> part_4_out_aaaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_aaaa6(X, Y, Xs, Ls, Bs, part_4_out_aaaa4(X, Xs, Ls, Bs)) -> part_4_out_aaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_qs_2_in_1_ag4(X, Xs, Ys, part_4_out_aaaa4(X, Xs, Littles, Bigs)) -> if_qs_2_in_2_ag6(X, Xs, Ys, Littles, Bigs, qs_2_in_ga2(Littles, Ls))
qs_2_in_ga2([]_0, []_0) -> qs_2_out_ga2([]_0, []_0)
qs_2_in_ga2(._22(X, Xs), Ys) -> if_qs_2_in_1_ga4(X, Xs, Ys, part_4_in_agaa4(X, Xs, Littles, Bigs))
part_4_in_agaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_agaa6(X, Y, Xs, Ls, Bs, less_2_in_aa2(X, Y))
if_part_4_in_1_agaa6(X, Y, Xs, Ls, Bs, less_2_out_aa2(X, Y)) -> if_part_4_in_2_agaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_ggaa6(X, Y, Xs, Ls, Bs, less_2_in_ga2(X, Y))
if_part_4_in_1_ggaa6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> if_part_4_in_2_ggaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_ggaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(underscore, []_0, []_0, []_0) -> part_4_out_ggaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_ggaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_ggaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_part_4_in_2_ggaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_ggaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
if_part_4_in_2_agaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_agaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
part_4_in_agaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_agaa6(X, Y, Xs, Ls, Bs, part_4_in_agaa4(X, Xs, Ls, Bs))
part_4_in_agaa4(underscore, []_0, []_0, []_0) -> part_4_out_agaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_agaa6(X, Y, Xs, Ls, Bs, part_4_out_agaa4(X, Xs, Ls, Bs)) -> part_4_out_agaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_qs_2_in_1_ga4(X, Xs, Ys, part_4_out_agaa4(X, Xs, Littles, Bigs)) -> if_qs_2_in_2_ga6(X, Xs, Ys, Littles, Bigs, qs_2_in_ga2(Littles, Ls))
if_qs_2_in_2_ga6(X, Xs, Ys, Littles, Bigs, qs_2_out_ga2(Littles, Ls)) -> if_qs_2_in_3_ga6(X, Xs, Ys, Bigs, Ls, qs_2_in_ga2(Bigs, Bs))
if_qs_2_in_3_ga6(X, Xs, Ys, Bigs, Ls, qs_2_out_ga2(Bigs, Bs)) -> if_qs_2_in_4_ga6(X, Xs, Ys, Ls, Bs, app_3_in_gga3(Ls, ._22(X, Bs), Ys))
app_3_in_gga3([]_0, X, X) -> app_3_out_gga3([]_0, X, X)
app_3_in_gga3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_gga5(X, Xs, Ys, Zs, app_3_in_gga3(Xs, Ys, Zs))
if_app_3_in_1_gga5(X, Xs, Ys, Zs, app_3_out_gga3(Xs, Ys, Zs)) -> app_3_out_gga3(._22(X, Xs), Ys, ._22(X, Zs))
if_qs_2_in_4_ga6(X, Xs, Ys, Ls, Bs, app_3_out_gga3(Ls, ._22(X, Bs), Ys)) -> qs_2_out_ga2(._22(X, Xs), Ys)
if_qs_2_in_2_ag6(X, Xs, Ys, Littles, Bigs, qs_2_out_ga2(Littles, Ls)) -> if_qs_2_in_3_ag6(X, Xs, Ys, Bigs, Ls, qs_2_in_ga2(Bigs, Bs))
if_qs_2_in_3_ag6(X, Xs, Ys, Bigs, Ls, qs_2_out_ga2(Bigs, Bs)) -> if_qs_2_in_4_ag6(X, Xs, Ys, Ls, Bs, app_3_in_ggg3(Ls, ._22(X, Bs), Ys))
app_3_in_ggg3([]_0, X, X) -> app_3_out_ggg3([]_0, X, X)
app_3_in_ggg3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_ggg5(X, Xs, Ys, Zs, app_3_in_ggg3(Xs, Ys, Zs))
if_app_3_in_1_ggg5(X, Xs, Ys, Zs, app_3_out_ggg3(Xs, Ys, Zs)) -> app_3_out_ggg3(._22(X, Xs), Ys, ._22(X, Zs))
if_qs_2_in_4_ag6(X, Xs, Ys, Ls, Bs, app_3_out_ggg3(Ls, ._22(X, Bs), Ys)) -> qs_2_out_ag2(._22(X, Xs), Ys)

The argument filtering Pi contains the following mapping:
qs_2_in_ag2(x1, x2)  =  qs_2_in_ag1(x2)
[]_0  =  []_0
._22(x1, x2)  =  ._21(x2)
0_0  =  0_0
s_11(x1)  =  s_1
qs_2_out_ag2(x1, x2)  =  qs_2_out_ag2(x1, x2)
if_qs_2_in_1_ag4(x1, x2, x3, x4)  =  if_qs_2_in_1_ag2(x3, x4)
part_4_in_aaaa4(x1, x2, x3, x4)  =  part_4_in_aaaa
if_part_4_in_1_aaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_aaaa1(x6)
less_2_in_aa2(x1, x2)  =  less_2_in_aa
less_2_out_aa2(x1, x2)  =  less_2_out_aa2(x1, x2)
if_less_2_in_1_aa3(x1, x2, x3)  =  if_less_2_in_1_aa1(x3)
if_part_4_in_2_aaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_aaaa1(x6)
part_4_in_gaaa4(x1, x2, x3, x4)  =  part_4_in_gaaa1(x1)
if_part_4_in_1_gaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_gaaa2(x1, x6)
less_2_in_ga2(x1, x2)  =  less_2_in_ga1(x1)
less_2_out_ga2(x1, x2)  =  less_2_out_ga2(x1, x2)
if_less_2_in_1_ga3(x1, x2, x3)  =  if_less_2_in_1_ga1(x3)
if_part_4_in_2_gaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_gaaa2(x1, x6)
if_part_4_in_3_gaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_gaaa2(x1, x6)
part_4_out_gaaa4(x1, x2, x3, x4)  =  part_4_out_gaaa4(x1, x2, x3, x4)
part_4_out_aaaa4(x1, x2, x3, x4)  =  part_4_out_aaaa3(x2, x3, x4)
if_part_4_in_3_aaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_aaaa1(x6)
if_qs_2_in_2_ag6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_2_ag4(x2, x3, x5, x6)
qs_2_in_ga2(x1, x2)  =  qs_2_in_ga1(x1)
qs_2_out_ga2(x1, x2)  =  qs_2_out_ga2(x1, x2)
if_qs_2_in_1_ga4(x1, x2, x3, x4)  =  if_qs_2_in_1_ga2(x2, x4)
part_4_in_agaa4(x1, x2, x3, x4)  =  part_4_in_agaa1(x2)
if_part_4_in_1_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_agaa2(x3, x6)
if_part_4_in_2_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_agaa2(x3, x6)
part_4_in_ggaa4(x1, x2, x3, x4)  =  part_4_in_ggaa2(x1, x2)
if_part_4_in_1_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_ggaa3(x1, x3, x6)
if_part_4_in_2_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_ggaa3(x1, x3, x6)
if_part_4_in_3_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_ggaa3(x1, x3, x6)
part_4_out_ggaa4(x1, x2, x3, x4)  =  part_4_out_ggaa4(x1, x2, x3, x4)
part_4_out_agaa4(x1, x2, x3, x4)  =  part_4_out_agaa3(x2, x3, x4)
if_part_4_in_3_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_agaa2(x3, x6)
if_qs_2_in_2_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_2_ga3(x2, x5, x6)
if_qs_2_in_3_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_3_ga3(x2, x5, x6)
if_qs_2_in_4_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_4_ga2(x2, x6)
app_3_in_gga3(x1, x2, x3)  =  app_3_in_gga2(x1, x2)
app_3_out_gga3(x1, x2, x3)  =  app_3_out_gga3(x1, x2, x3)
if_app_3_in_1_gga5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_gga3(x2, x3, x5)
if_qs_2_in_3_ag6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_3_ag4(x2, x3, x5, x6)
if_qs_2_in_4_ag6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_4_ag3(x2, x3, x6)
app_3_in_ggg3(x1, x2, x3)  =  app_3_in_ggg3(x1, x2, x3)
app_3_out_ggg3(x1, x2, x3)  =  app_3_out_ggg3(x1, x2, x3)
if_app_3_in_1_ggg5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_ggg4(x2, x3, x4, x5)
APP_3_IN_GGG3(x1, x2, x3)  =  APP_3_IN_GGG3(x1, x2, x3)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

APP_3_IN_GGG3(._22(X, Xs), Ys, ._22(X, Zs)) -> APP_3_IN_GGG3(Xs, Ys, Zs)

R is empty.
The argument filtering Pi contains the following mapping:
._22(x1, x2)  =  ._21(x2)
APP_3_IN_GGG3(x1, x2, x3)  =  APP_3_IN_GGG3(x1, x2, x3)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP

Q DP problem:
The TRS P consists of the following rules:

APP_3_IN_GGG3(._21(Xs), Ys, ._21(Zs)) -> APP_3_IN_GGG3(Xs, Ys, Zs)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
By using the subterm criterion together with the size-change analysis we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
PiDP
                ↳ UsableRulesProof
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

APP_3_IN_GGA3(._22(X, Xs), Ys, ._22(X, Zs)) -> APP_3_IN_GGA3(Xs, Ys, Zs)

The TRS R consists of the following rules:

qs_2_in_ag2([]_0, []_0) -> qs_2_out_ag2([]_0, []_0)
qs_2_in_ag2(._22(X, Xs), Ys) -> if_qs_2_in_1_ag4(X, Xs, Ys, part_4_in_aaaa4(X, Xs, Littles, Bigs))
part_4_in_aaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_aaaa6(X, Y, Xs, Ls, Bs, less_2_in_aa2(X, Y))
less_2_in_aa2(0_0, s_11(underscore1)) -> less_2_out_aa2(0_0, s_11(underscore1))
less_2_in_aa2(s_11(X), s_11(Y)) -> if_less_2_in_1_aa3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_aa3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_aa2(s_11(X), s_11(Y))
if_part_4_in_1_aaaa6(X, Y, Xs, Ls, Bs, less_2_out_aa2(X, Y)) -> if_part_4_in_2_aaaa6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
part_4_in_gaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_gaaa6(X, Y, Xs, Ls, Bs, less_2_in_ga2(X, Y))
less_2_in_ga2(0_0, s_11(underscore1)) -> less_2_out_ga2(0_0, s_11(underscore1))
less_2_in_ga2(s_11(X), s_11(Y)) -> if_less_2_in_1_ga3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_ga3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_ga2(s_11(X), s_11(Y))
if_part_4_in_1_gaaa6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> if_part_4_in_2_gaaa6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
part_4_in_gaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_gaaa6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
part_4_in_gaaa4(underscore, []_0, []_0, []_0) -> part_4_out_gaaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_gaaa6(X, Y, Xs, Ls, Bs, part_4_out_gaaa4(X, Xs, Ls, Bs)) -> part_4_out_gaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_part_4_in_2_gaaa6(X, Y, Xs, Ls, Bs, part_4_out_gaaa4(X, Xs, Ls, Bs)) -> part_4_out_gaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
if_part_4_in_2_aaaa6(X, Y, Xs, Ls, Bs, part_4_out_gaaa4(X, Xs, Ls, Bs)) -> part_4_out_aaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
part_4_in_aaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_aaaa6(X, Y, Xs, Ls, Bs, part_4_in_aaaa4(X, Xs, Ls, Bs))
part_4_in_aaaa4(underscore, []_0, []_0, []_0) -> part_4_out_aaaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_aaaa6(X, Y, Xs, Ls, Bs, part_4_out_aaaa4(X, Xs, Ls, Bs)) -> part_4_out_aaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_qs_2_in_1_ag4(X, Xs, Ys, part_4_out_aaaa4(X, Xs, Littles, Bigs)) -> if_qs_2_in_2_ag6(X, Xs, Ys, Littles, Bigs, qs_2_in_ga2(Littles, Ls))
qs_2_in_ga2([]_0, []_0) -> qs_2_out_ga2([]_0, []_0)
qs_2_in_ga2(._22(X, Xs), Ys) -> if_qs_2_in_1_ga4(X, Xs, Ys, part_4_in_agaa4(X, Xs, Littles, Bigs))
part_4_in_agaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_agaa6(X, Y, Xs, Ls, Bs, less_2_in_aa2(X, Y))
if_part_4_in_1_agaa6(X, Y, Xs, Ls, Bs, less_2_out_aa2(X, Y)) -> if_part_4_in_2_agaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_ggaa6(X, Y, Xs, Ls, Bs, less_2_in_ga2(X, Y))
if_part_4_in_1_ggaa6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> if_part_4_in_2_ggaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_ggaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(underscore, []_0, []_0, []_0) -> part_4_out_ggaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_ggaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_ggaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_part_4_in_2_ggaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_ggaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
if_part_4_in_2_agaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_agaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
part_4_in_agaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_agaa6(X, Y, Xs, Ls, Bs, part_4_in_agaa4(X, Xs, Ls, Bs))
part_4_in_agaa4(underscore, []_0, []_0, []_0) -> part_4_out_agaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_agaa6(X, Y, Xs, Ls, Bs, part_4_out_agaa4(X, Xs, Ls, Bs)) -> part_4_out_agaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_qs_2_in_1_ga4(X, Xs, Ys, part_4_out_agaa4(X, Xs, Littles, Bigs)) -> if_qs_2_in_2_ga6(X, Xs, Ys, Littles, Bigs, qs_2_in_ga2(Littles, Ls))
if_qs_2_in_2_ga6(X, Xs, Ys, Littles, Bigs, qs_2_out_ga2(Littles, Ls)) -> if_qs_2_in_3_ga6(X, Xs, Ys, Bigs, Ls, qs_2_in_ga2(Bigs, Bs))
if_qs_2_in_3_ga6(X, Xs, Ys, Bigs, Ls, qs_2_out_ga2(Bigs, Bs)) -> if_qs_2_in_4_ga6(X, Xs, Ys, Ls, Bs, app_3_in_gga3(Ls, ._22(X, Bs), Ys))
app_3_in_gga3([]_0, X, X) -> app_3_out_gga3([]_0, X, X)
app_3_in_gga3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_gga5(X, Xs, Ys, Zs, app_3_in_gga3(Xs, Ys, Zs))
if_app_3_in_1_gga5(X, Xs, Ys, Zs, app_3_out_gga3(Xs, Ys, Zs)) -> app_3_out_gga3(._22(X, Xs), Ys, ._22(X, Zs))
if_qs_2_in_4_ga6(X, Xs, Ys, Ls, Bs, app_3_out_gga3(Ls, ._22(X, Bs), Ys)) -> qs_2_out_ga2(._22(X, Xs), Ys)
if_qs_2_in_2_ag6(X, Xs, Ys, Littles, Bigs, qs_2_out_ga2(Littles, Ls)) -> if_qs_2_in_3_ag6(X, Xs, Ys, Bigs, Ls, qs_2_in_ga2(Bigs, Bs))
if_qs_2_in_3_ag6(X, Xs, Ys, Bigs, Ls, qs_2_out_ga2(Bigs, Bs)) -> if_qs_2_in_4_ag6(X, Xs, Ys, Ls, Bs, app_3_in_ggg3(Ls, ._22(X, Bs), Ys))
app_3_in_ggg3([]_0, X, X) -> app_3_out_ggg3([]_0, X, X)
app_3_in_ggg3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_ggg5(X, Xs, Ys, Zs, app_3_in_ggg3(Xs, Ys, Zs))
if_app_3_in_1_ggg5(X, Xs, Ys, Zs, app_3_out_ggg3(Xs, Ys, Zs)) -> app_3_out_ggg3(._22(X, Xs), Ys, ._22(X, Zs))
if_qs_2_in_4_ag6(X, Xs, Ys, Ls, Bs, app_3_out_ggg3(Ls, ._22(X, Bs), Ys)) -> qs_2_out_ag2(._22(X, Xs), Ys)

The argument filtering Pi contains the following mapping:
qs_2_in_ag2(x1, x2)  =  qs_2_in_ag1(x2)
[]_0  =  []_0
._22(x1, x2)  =  ._21(x2)
0_0  =  0_0
s_11(x1)  =  s_1
qs_2_out_ag2(x1, x2)  =  qs_2_out_ag2(x1, x2)
if_qs_2_in_1_ag4(x1, x2, x3, x4)  =  if_qs_2_in_1_ag2(x3, x4)
part_4_in_aaaa4(x1, x2, x3, x4)  =  part_4_in_aaaa
if_part_4_in_1_aaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_aaaa1(x6)
less_2_in_aa2(x1, x2)  =  less_2_in_aa
less_2_out_aa2(x1, x2)  =  less_2_out_aa2(x1, x2)
if_less_2_in_1_aa3(x1, x2, x3)  =  if_less_2_in_1_aa1(x3)
if_part_4_in_2_aaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_aaaa1(x6)
part_4_in_gaaa4(x1, x2, x3, x4)  =  part_4_in_gaaa1(x1)
if_part_4_in_1_gaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_gaaa2(x1, x6)
less_2_in_ga2(x1, x2)  =  less_2_in_ga1(x1)
less_2_out_ga2(x1, x2)  =  less_2_out_ga2(x1, x2)
if_less_2_in_1_ga3(x1, x2, x3)  =  if_less_2_in_1_ga1(x3)
if_part_4_in_2_gaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_gaaa2(x1, x6)
if_part_4_in_3_gaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_gaaa2(x1, x6)
part_4_out_gaaa4(x1, x2, x3, x4)  =  part_4_out_gaaa4(x1, x2, x3, x4)
part_4_out_aaaa4(x1, x2, x3, x4)  =  part_4_out_aaaa3(x2, x3, x4)
if_part_4_in_3_aaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_aaaa1(x6)
if_qs_2_in_2_ag6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_2_ag4(x2, x3, x5, x6)
qs_2_in_ga2(x1, x2)  =  qs_2_in_ga1(x1)
qs_2_out_ga2(x1, x2)  =  qs_2_out_ga2(x1, x2)
if_qs_2_in_1_ga4(x1, x2, x3, x4)  =  if_qs_2_in_1_ga2(x2, x4)
part_4_in_agaa4(x1, x2, x3, x4)  =  part_4_in_agaa1(x2)
if_part_4_in_1_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_agaa2(x3, x6)
if_part_4_in_2_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_agaa2(x3, x6)
part_4_in_ggaa4(x1, x2, x3, x4)  =  part_4_in_ggaa2(x1, x2)
if_part_4_in_1_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_ggaa3(x1, x3, x6)
if_part_4_in_2_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_ggaa3(x1, x3, x6)
if_part_4_in_3_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_ggaa3(x1, x3, x6)
part_4_out_ggaa4(x1, x2, x3, x4)  =  part_4_out_ggaa4(x1, x2, x3, x4)
part_4_out_agaa4(x1, x2, x3, x4)  =  part_4_out_agaa3(x2, x3, x4)
if_part_4_in_3_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_agaa2(x3, x6)
if_qs_2_in_2_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_2_ga3(x2, x5, x6)
if_qs_2_in_3_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_3_ga3(x2, x5, x6)
if_qs_2_in_4_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_4_ga2(x2, x6)
app_3_in_gga3(x1, x2, x3)  =  app_3_in_gga2(x1, x2)
app_3_out_gga3(x1, x2, x3)  =  app_3_out_gga3(x1, x2, x3)
if_app_3_in_1_gga5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_gga3(x2, x3, x5)
if_qs_2_in_3_ag6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_3_ag4(x2, x3, x5, x6)
if_qs_2_in_4_ag6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_4_ag3(x2, x3, x6)
app_3_in_ggg3(x1, x2, x3)  =  app_3_in_ggg3(x1, x2, x3)
app_3_out_ggg3(x1, x2, x3)  =  app_3_out_ggg3(x1, x2, x3)
if_app_3_in_1_ggg5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_ggg4(x2, x3, x4, x5)
APP_3_IN_GGA3(x1, x2, x3)  =  APP_3_IN_GGA2(x1, x2)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

APP_3_IN_GGA3(._22(X, Xs), Ys, ._22(X, Zs)) -> APP_3_IN_GGA3(Xs, Ys, Zs)

R is empty.
The argument filtering Pi contains the following mapping:
._22(x1, x2)  =  ._21(x2)
APP_3_IN_GGA3(x1, x2, x3)  =  APP_3_IN_GGA2(x1, x2)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP

Q DP problem:
The TRS P consists of the following rules:

APP_3_IN_GGA2(._21(Xs), Ys) -> APP_3_IN_GGA2(Xs, Ys)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
By using the subterm criterion together with the size-change analysis we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
PiDP
                ↳ UsableRulesProof
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

LESS_2_IN_AA2(s_11(X), s_11(Y)) -> LESS_2_IN_AA2(X, Y)

The TRS R consists of the following rules:

qs_2_in_ag2([]_0, []_0) -> qs_2_out_ag2([]_0, []_0)
qs_2_in_ag2(._22(X, Xs), Ys) -> if_qs_2_in_1_ag4(X, Xs, Ys, part_4_in_aaaa4(X, Xs, Littles, Bigs))
part_4_in_aaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_aaaa6(X, Y, Xs, Ls, Bs, less_2_in_aa2(X, Y))
less_2_in_aa2(0_0, s_11(underscore1)) -> less_2_out_aa2(0_0, s_11(underscore1))
less_2_in_aa2(s_11(X), s_11(Y)) -> if_less_2_in_1_aa3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_aa3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_aa2(s_11(X), s_11(Y))
if_part_4_in_1_aaaa6(X, Y, Xs, Ls, Bs, less_2_out_aa2(X, Y)) -> if_part_4_in_2_aaaa6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
part_4_in_gaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_gaaa6(X, Y, Xs, Ls, Bs, less_2_in_ga2(X, Y))
less_2_in_ga2(0_0, s_11(underscore1)) -> less_2_out_ga2(0_0, s_11(underscore1))
less_2_in_ga2(s_11(X), s_11(Y)) -> if_less_2_in_1_ga3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_ga3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_ga2(s_11(X), s_11(Y))
if_part_4_in_1_gaaa6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> if_part_4_in_2_gaaa6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
part_4_in_gaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_gaaa6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
part_4_in_gaaa4(underscore, []_0, []_0, []_0) -> part_4_out_gaaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_gaaa6(X, Y, Xs, Ls, Bs, part_4_out_gaaa4(X, Xs, Ls, Bs)) -> part_4_out_gaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_part_4_in_2_gaaa6(X, Y, Xs, Ls, Bs, part_4_out_gaaa4(X, Xs, Ls, Bs)) -> part_4_out_gaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
if_part_4_in_2_aaaa6(X, Y, Xs, Ls, Bs, part_4_out_gaaa4(X, Xs, Ls, Bs)) -> part_4_out_aaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
part_4_in_aaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_aaaa6(X, Y, Xs, Ls, Bs, part_4_in_aaaa4(X, Xs, Ls, Bs))
part_4_in_aaaa4(underscore, []_0, []_0, []_0) -> part_4_out_aaaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_aaaa6(X, Y, Xs, Ls, Bs, part_4_out_aaaa4(X, Xs, Ls, Bs)) -> part_4_out_aaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_qs_2_in_1_ag4(X, Xs, Ys, part_4_out_aaaa4(X, Xs, Littles, Bigs)) -> if_qs_2_in_2_ag6(X, Xs, Ys, Littles, Bigs, qs_2_in_ga2(Littles, Ls))
qs_2_in_ga2([]_0, []_0) -> qs_2_out_ga2([]_0, []_0)
qs_2_in_ga2(._22(X, Xs), Ys) -> if_qs_2_in_1_ga4(X, Xs, Ys, part_4_in_agaa4(X, Xs, Littles, Bigs))
part_4_in_agaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_agaa6(X, Y, Xs, Ls, Bs, less_2_in_aa2(X, Y))
if_part_4_in_1_agaa6(X, Y, Xs, Ls, Bs, less_2_out_aa2(X, Y)) -> if_part_4_in_2_agaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_ggaa6(X, Y, Xs, Ls, Bs, less_2_in_ga2(X, Y))
if_part_4_in_1_ggaa6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> if_part_4_in_2_ggaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_ggaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(underscore, []_0, []_0, []_0) -> part_4_out_ggaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_ggaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_ggaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_part_4_in_2_ggaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_ggaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
if_part_4_in_2_agaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_agaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
part_4_in_agaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_agaa6(X, Y, Xs, Ls, Bs, part_4_in_agaa4(X, Xs, Ls, Bs))
part_4_in_agaa4(underscore, []_0, []_0, []_0) -> part_4_out_agaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_agaa6(X, Y, Xs, Ls, Bs, part_4_out_agaa4(X, Xs, Ls, Bs)) -> part_4_out_agaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_qs_2_in_1_ga4(X, Xs, Ys, part_4_out_agaa4(X, Xs, Littles, Bigs)) -> if_qs_2_in_2_ga6(X, Xs, Ys, Littles, Bigs, qs_2_in_ga2(Littles, Ls))
if_qs_2_in_2_ga6(X, Xs, Ys, Littles, Bigs, qs_2_out_ga2(Littles, Ls)) -> if_qs_2_in_3_ga6(X, Xs, Ys, Bigs, Ls, qs_2_in_ga2(Bigs, Bs))
if_qs_2_in_3_ga6(X, Xs, Ys, Bigs, Ls, qs_2_out_ga2(Bigs, Bs)) -> if_qs_2_in_4_ga6(X, Xs, Ys, Ls, Bs, app_3_in_gga3(Ls, ._22(X, Bs), Ys))
app_3_in_gga3([]_0, X, X) -> app_3_out_gga3([]_0, X, X)
app_3_in_gga3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_gga5(X, Xs, Ys, Zs, app_3_in_gga3(Xs, Ys, Zs))
if_app_3_in_1_gga5(X, Xs, Ys, Zs, app_3_out_gga3(Xs, Ys, Zs)) -> app_3_out_gga3(._22(X, Xs), Ys, ._22(X, Zs))
if_qs_2_in_4_ga6(X, Xs, Ys, Ls, Bs, app_3_out_gga3(Ls, ._22(X, Bs), Ys)) -> qs_2_out_ga2(._22(X, Xs), Ys)
if_qs_2_in_2_ag6(X, Xs, Ys, Littles, Bigs, qs_2_out_ga2(Littles, Ls)) -> if_qs_2_in_3_ag6(X, Xs, Ys, Bigs, Ls, qs_2_in_ga2(Bigs, Bs))
if_qs_2_in_3_ag6(X, Xs, Ys, Bigs, Ls, qs_2_out_ga2(Bigs, Bs)) -> if_qs_2_in_4_ag6(X, Xs, Ys, Ls, Bs, app_3_in_ggg3(Ls, ._22(X, Bs), Ys))
app_3_in_ggg3([]_0, X, X) -> app_3_out_ggg3([]_0, X, X)
app_3_in_ggg3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_ggg5(X, Xs, Ys, Zs, app_3_in_ggg3(Xs, Ys, Zs))
if_app_3_in_1_ggg5(X, Xs, Ys, Zs, app_3_out_ggg3(Xs, Ys, Zs)) -> app_3_out_ggg3(._22(X, Xs), Ys, ._22(X, Zs))
if_qs_2_in_4_ag6(X, Xs, Ys, Ls, Bs, app_3_out_ggg3(Ls, ._22(X, Bs), Ys)) -> qs_2_out_ag2(._22(X, Xs), Ys)

The argument filtering Pi contains the following mapping:
qs_2_in_ag2(x1, x2)  =  qs_2_in_ag1(x2)
[]_0  =  []_0
._22(x1, x2)  =  ._21(x2)
0_0  =  0_0
s_11(x1)  =  s_1
qs_2_out_ag2(x1, x2)  =  qs_2_out_ag2(x1, x2)
if_qs_2_in_1_ag4(x1, x2, x3, x4)  =  if_qs_2_in_1_ag2(x3, x4)
part_4_in_aaaa4(x1, x2, x3, x4)  =  part_4_in_aaaa
if_part_4_in_1_aaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_aaaa1(x6)
less_2_in_aa2(x1, x2)  =  less_2_in_aa
less_2_out_aa2(x1, x2)  =  less_2_out_aa2(x1, x2)
if_less_2_in_1_aa3(x1, x2, x3)  =  if_less_2_in_1_aa1(x3)
if_part_4_in_2_aaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_aaaa1(x6)
part_4_in_gaaa4(x1, x2, x3, x4)  =  part_4_in_gaaa1(x1)
if_part_4_in_1_gaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_gaaa2(x1, x6)
less_2_in_ga2(x1, x2)  =  less_2_in_ga1(x1)
less_2_out_ga2(x1, x2)  =  less_2_out_ga2(x1, x2)
if_less_2_in_1_ga3(x1, x2, x3)  =  if_less_2_in_1_ga1(x3)
if_part_4_in_2_gaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_gaaa2(x1, x6)
if_part_4_in_3_gaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_gaaa2(x1, x6)
part_4_out_gaaa4(x1, x2, x3, x4)  =  part_4_out_gaaa4(x1, x2, x3, x4)
part_4_out_aaaa4(x1, x2, x3, x4)  =  part_4_out_aaaa3(x2, x3, x4)
if_part_4_in_3_aaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_aaaa1(x6)
if_qs_2_in_2_ag6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_2_ag4(x2, x3, x5, x6)
qs_2_in_ga2(x1, x2)  =  qs_2_in_ga1(x1)
qs_2_out_ga2(x1, x2)  =  qs_2_out_ga2(x1, x2)
if_qs_2_in_1_ga4(x1, x2, x3, x4)  =  if_qs_2_in_1_ga2(x2, x4)
part_4_in_agaa4(x1, x2, x3, x4)  =  part_4_in_agaa1(x2)
if_part_4_in_1_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_agaa2(x3, x6)
if_part_4_in_2_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_agaa2(x3, x6)
part_4_in_ggaa4(x1, x2, x3, x4)  =  part_4_in_ggaa2(x1, x2)
if_part_4_in_1_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_ggaa3(x1, x3, x6)
if_part_4_in_2_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_ggaa3(x1, x3, x6)
if_part_4_in_3_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_ggaa3(x1, x3, x6)
part_4_out_ggaa4(x1, x2, x3, x4)  =  part_4_out_ggaa4(x1, x2, x3, x4)
part_4_out_agaa4(x1, x2, x3, x4)  =  part_4_out_agaa3(x2, x3, x4)
if_part_4_in_3_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_agaa2(x3, x6)
if_qs_2_in_2_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_2_ga3(x2, x5, x6)
if_qs_2_in_3_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_3_ga3(x2, x5, x6)
if_qs_2_in_4_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_4_ga2(x2, x6)
app_3_in_gga3(x1, x2, x3)  =  app_3_in_gga2(x1, x2)
app_3_out_gga3(x1, x2, x3)  =  app_3_out_gga3(x1, x2, x3)
if_app_3_in_1_gga5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_gga3(x2, x3, x5)
if_qs_2_in_3_ag6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_3_ag4(x2, x3, x5, x6)
if_qs_2_in_4_ag6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_4_ag3(x2, x3, x6)
app_3_in_ggg3(x1, x2, x3)  =  app_3_in_ggg3(x1, x2, x3)
app_3_out_ggg3(x1, x2, x3)  =  app_3_out_ggg3(x1, x2, x3)
if_app_3_in_1_ggg5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_ggg4(x2, x3, x4, x5)
LESS_2_IN_AA2(x1, x2)  =  LESS_2_IN_AA

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

LESS_2_IN_AA2(s_11(X), s_11(Y)) -> LESS_2_IN_AA2(X, Y)

R is empty.
The argument filtering Pi contains the following mapping:
s_11(x1)  =  s_1
LESS_2_IN_AA2(x1, x2)  =  LESS_2_IN_AA

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP

Q DP problem:
The TRS P consists of the following rules:

LESS_2_IN_AA -> LESS_2_IN_AA

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
PiDP
                ↳ UsableRulesProof
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

PART_4_IN_GGAA4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> PART_4_IN_GGAA4(X, Xs, Ls, Bs)
IF_PART_4_IN_1_GGAA6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> PART_4_IN_GGAA4(X, Xs, Ls, Bs)
PART_4_IN_GGAA4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> IF_PART_4_IN_1_GGAA6(X, Y, Xs, Ls, Bs, less_2_in_ga2(X, Y))

The TRS R consists of the following rules:

qs_2_in_ag2([]_0, []_0) -> qs_2_out_ag2([]_0, []_0)
qs_2_in_ag2(._22(X, Xs), Ys) -> if_qs_2_in_1_ag4(X, Xs, Ys, part_4_in_aaaa4(X, Xs, Littles, Bigs))
part_4_in_aaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_aaaa6(X, Y, Xs, Ls, Bs, less_2_in_aa2(X, Y))
less_2_in_aa2(0_0, s_11(underscore1)) -> less_2_out_aa2(0_0, s_11(underscore1))
less_2_in_aa2(s_11(X), s_11(Y)) -> if_less_2_in_1_aa3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_aa3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_aa2(s_11(X), s_11(Y))
if_part_4_in_1_aaaa6(X, Y, Xs, Ls, Bs, less_2_out_aa2(X, Y)) -> if_part_4_in_2_aaaa6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
part_4_in_gaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_gaaa6(X, Y, Xs, Ls, Bs, less_2_in_ga2(X, Y))
less_2_in_ga2(0_0, s_11(underscore1)) -> less_2_out_ga2(0_0, s_11(underscore1))
less_2_in_ga2(s_11(X), s_11(Y)) -> if_less_2_in_1_ga3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_ga3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_ga2(s_11(X), s_11(Y))
if_part_4_in_1_gaaa6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> if_part_4_in_2_gaaa6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
part_4_in_gaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_gaaa6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
part_4_in_gaaa4(underscore, []_0, []_0, []_0) -> part_4_out_gaaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_gaaa6(X, Y, Xs, Ls, Bs, part_4_out_gaaa4(X, Xs, Ls, Bs)) -> part_4_out_gaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_part_4_in_2_gaaa6(X, Y, Xs, Ls, Bs, part_4_out_gaaa4(X, Xs, Ls, Bs)) -> part_4_out_gaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
if_part_4_in_2_aaaa6(X, Y, Xs, Ls, Bs, part_4_out_gaaa4(X, Xs, Ls, Bs)) -> part_4_out_aaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
part_4_in_aaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_aaaa6(X, Y, Xs, Ls, Bs, part_4_in_aaaa4(X, Xs, Ls, Bs))
part_4_in_aaaa4(underscore, []_0, []_0, []_0) -> part_4_out_aaaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_aaaa6(X, Y, Xs, Ls, Bs, part_4_out_aaaa4(X, Xs, Ls, Bs)) -> part_4_out_aaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_qs_2_in_1_ag4(X, Xs, Ys, part_4_out_aaaa4(X, Xs, Littles, Bigs)) -> if_qs_2_in_2_ag6(X, Xs, Ys, Littles, Bigs, qs_2_in_ga2(Littles, Ls))
qs_2_in_ga2([]_0, []_0) -> qs_2_out_ga2([]_0, []_0)
qs_2_in_ga2(._22(X, Xs), Ys) -> if_qs_2_in_1_ga4(X, Xs, Ys, part_4_in_agaa4(X, Xs, Littles, Bigs))
part_4_in_agaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_agaa6(X, Y, Xs, Ls, Bs, less_2_in_aa2(X, Y))
if_part_4_in_1_agaa6(X, Y, Xs, Ls, Bs, less_2_out_aa2(X, Y)) -> if_part_4_in_2_agaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_ggaa6(X, Y, Xs, Ls, Bs, less_2_in_ga2(X, Y))
if_part_4_in_1_ggaa6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> if_part_4_in_2_ggaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_ggaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(underscore, []_0, []_0, []_0) -> part_4_out_ggaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_ggaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_ggaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_part_4_in_2_ggaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_ggaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
if_part_4_in_2_agaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_agaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
part_4_in_agaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_agaa6(X, Y, Xs, Ls, Bs, part_4_in_agaa4(X, Xs, Ls, Bs))
part_4_in_agaa4(underscore, []_0, []_0, []_0) -> part_4_out_agaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_agaa6(X, Y, Xs, Ls, Bs, part_4_out_agaa4(X, Xs, Ls, Bs)) -> part_4_out_agaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_qs_2_in_1_ga4(X, Xs, Ys, part_4_out_agaa4(X, Xs, Littles, Bigs)) -> if_qs_2_in_2_ga6(X, Xs, Ys, Littles, Bigs, qs_2_in_ga2(Littles, Ls))
if_qs_2_in_2_ga6(X, Xs, Ys, Littles, Bigs, qs_2_out_ga2(Littles, Ls)) -> if_qs_2_in_3_ga6(X, Xs, Ys, Bigs, Ls, qs_2_in_ga2(Bigs, Bs))
if_qs_2_in_3_ga6(X, Xs, Ys, Bigs, Ls, qs_2_out_ga2(Bigs, Bs)) -> if_qs_2_in_4_ga6(X, Xs, Ys, Ls, Bs, app_3_in_gga3(Ls, ._22(X, Bs), Ys))
app_3_in_gga3([]_0, X, X) -> app_3_out_gga3([]_0, X, X)
app_3_in_gga3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_gga5(X, Xs, Ys, Zs, app_3_in_gga3(Xs, Ys, Zs))
if_app_3_in_1_gga5(X, Xs, Ys, Zs, app_3_out_gga3(Xs, Ys, Zs)) -> app_3_out_gga3(._22(X, Xs), Ys, ._22(X, Zs))
if_qs_2_in_4_ga6(X, Xs, Ys, Ls, Bs, app_3_out_gga3(Ls, ._22(X, Bs), Ys)) -> qs_2_out_ga2(._22(X, Xs), Ys)
if_qs_2_in_2_ag6(X, Xs, Ys, Littles, Bigs, qs_2_out_ga2(Littles, Ls)) -> if_qs_2_in_3_ag6(X, Xs, Ys, Bigs, Ls, qs_2_in_ga2(Bigs, Bs))
if_qs_2_in_3_ag6(X, Xs, Ys, Bigs, Ls, qs_2_out_ga2(Bigs, Bs)) -> if_qs_2_in_4_ag6(X, Xs, Ys, Ls, Bs, app_3_in_ggg3(Ls, ._22(X, Bs), Ys))
app_3_in_ggg3([]_0, X, X) -> app_3_out_ggg3([]_0, X, X)
app_3_in_ggg3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_ggg5(X, Xs, Ys, Zs, app_3_in_ggg3(Xs, Ys, Zs))
if_app_3_in_1_ggg5(X, Xs, Ys, Zs, app_3_out_ggg3(Xs, Ys, Zs)) -> app_3_out_ggg3(._22(X, Xs), Ys, ._22(X, Zs))
if_qs_2_in_4_ag6(X, Xs, Ys, Ls, Bs, app_3_out_ggg3(Ls, ._22(X, Bs), Ys)) -> qs_2_out_ag2(._22(X, Xs), Ys)

The argument filtering Pi contains the following mapping:
qs_2_in_ag2(x1, x2)  =  qs_2_in_ag1(x2)
[]_0  =  []_0
._22(x1, x2)  =  ._21(x2)
0_0  =  0_0
s_11(x1)  =  s_1
qs_2_out_ag2(x1, x2)  =  qs_2_out_ag2(x1, x2)
if_qs_2_in_1_ag4(x1, x2, x3, x4)  =  if_qs_2_in_1_ag2(x3, x4)
part_4_in_aaaa4(x1, x2, x3, x4)  =  part_4_in_aaaa
if_part_4_in_1_aaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_aaaa1(x6)
less_2_in_aa2(x1, x2)  =  less_2_in_aa
less_2_out_aa2(x1, x2)  =  less_2_out_aa2(x1, x2)
if_less_2_in_1_aa3(x1, x2, x3)  =  if_less_2_in_1_aa1(x3)
if_part_4_in_2_aaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_aaaa1(x6)
part_4_in_gaaa4(x1, x2, x3, x4)  =  part_4_in_gaaa1(x1)
if_part_4_in_1_gaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_gaaa2(x1, x6)
less_2_in_ga2(x1, x2)  =  less_2_in_ga1(x1)
less_2_out_ga2(x1, x2)  =  less_2_out_ga2(x1, x2)
if_less_2_in_1_ga3(x1, x2, x3)  =  if_less_2_in_1_ga1(x3)
if_part_4_in_2_gaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_gaaa2(x1, x6)
if_part_4_in_3_gaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_gaaa2(x1, x6)
part_4_out_gaaa4(x1, x2, x3, x4)  =  part_4_out_gaaa4(x1, x2, x3, x4)
part_4_out_aaaa4(x1, x2, x3, x4)  =  part_4_out_aaaa3(x2, x3, x4)
if_part_4_in_3_aaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_aaaa1(x6)
if_qs_2_in_2_ag6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_2_ag4(x2, x3, x5, x6)
qs_2_in_ga2(x1, x2)  =  qs_2_in_ga1(x1)
qs_2_out_ga2(x1, x2)  =  qs_2_out_ga2(x1, x2)
if_qs_2_in_1_ga4(x1, x2, x3, x4)  =  if_qs_2_in_1_ga2(x2, x4)
part_4_in_agaa4(x1, x2, x3, x4)  =  part_4_in_agaa1(x2)
if_part_4_in_1_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_agaa2(x3, x6)
if_part_4_in_2_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_agaa2(x3, x6)
part_4_in_ggaa4(x1, x2, x3, x4)  =  part_4_in_ggaa2(x1, x2)
if_part_4_in_1_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_ggaa3(x1, x3, x6)
if_part_4_in_2_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_ggaa3(x1, x3, x6)
if_part_4_in_3_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_ggaa3(x1, x3, x6)
part_4_out_ggaa4(x1, x2, x3, x4)  =  part_4_out_ggaa4(x1, x2, x3, x4)
part_4_out_agaa4(x1, x2, x3, x4)  =  part_4_out_agaa3(x2, x3, x4)
if_part_4_in_3_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_agaa2(x3, x6)
if_qs_2_in_2_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_2_ga3(x2, x5, x6)
if_qs_2_in_3_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_3_ga3(x2, x5, x6)
if_qs_2_in_4_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_4_ga2(x2, x6)
app_3_in_gga3(x1, x2, x3)  =  app_3_in_gga2(x1, x2)
app_3_out_gga3(x1, x2, x3)  =  app_3_out_gga3(x1, x2, x3)
if_app_3_in_1_gga5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_gga3(x2, x3, x5)
if_qs_2_in_3_ag6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_3_ag4(x2, x3, x5, x6)
if_qs_2_in_4_ag6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_4_ag3(x2, x3, x6)
app_3_in_ggg3(x1, x2, x3)  =  app_3_in_ggg3(x1, x2, x3)
app_3_out_ggg3(x1, x2, x3)  =  app_3_out_ggg3(x1, x2, x3)
if_app_3_in_1_ggg5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_ggg4(x2, x3, x4, x5)
PART_4_IN_GGAA4(x1, x2, x3, x4)  =  PART_4_IN_GGAA2(x1, x2)
IF_PART_4_IN_1_GGAA6(x1, x2, x3, x4, x5, x6)  =  IF_PART_4_IN_1_GGAA3(x1, x3, x6)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

PART_4_IN_GGAA4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> PART_4_IN_GGAA4(X, Xs, Ls, Bs)
IF_PART_4_IN_1_GGAA6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> PART_4_IN_GGAA4(X, Xs, Ls, Bs)
PART_4_IN_GGAA4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> IF_PART_4_IN_1_GGAA6(X, Y, Xs, Ls, Bs, less_2_in_ga2(X, Y))

The TRS R consists of the following rules:

less_2_in_ga2(0_0, s_11(underscore1)) -> less_2_out_ga2(0_0, s_11(underscore1))
less_2_in_ga2(s_11(X), s_11(Y)) -> if_less_2_in_1_ga3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_ga3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_ga2(s_11(X), s_11(Y))
less_2_in_aa2(0_0, s_11(underscore1)) -> less_2_out_aa2(0_0, s_11(underscore1))
less_2_in_aa2(s_11(X), s_11(Y)) -> if_less_2_in_1_aa3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_aa3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_aa2(s_11(X), s_11(Y))

The argument filtering Pi contains the following mapping:
._22(x1, x2)  =  ._21(x2)
0_0  =  0_0
s_11(x1)  =  s_1
less_2_in_aa2(x1, x2)  =  less_2_in_aa
less_2_out_aa2(x1, x2)  =  less_2_out_aa2(x1, x2)
if_less_2_in_1_aa3(x1, x2, x3)  =  if_less_2_in_1_aa1(x3)
less_2_in_ga2(x1, x2)  =  less_2_in_ga1(x1)
less_2_out_ga2(x1, x2)  =  less_2_out_ga2(x1, x2)
if_less_2_in_1_ga3(x1, x2, x3)  =  if_less_2_in_1_ga1(x3)
PART_4_IN_GGAA4(x1, x2, x3, x4)  =  PART_4_IN_GGAA2(x1, x2)
IF_PART_4_IN_1_GGAA6(x1, x2, x3, x4, x5, x6)  =  IF_PART_4_IN_1_GGAA3(x1, x3, x6)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP

Q DP problem:
The TRS P consists of the following rules:

PART_4_IN_GGAA2(X, ._21(Xs)) -> PART_4_IN_GGAA2(X, Xs)
IF_PART_4_IN_1_GGAA3(X, Xs, less_2_out_ga2(X, Y)) -> PART_4_IN_GGAA2(X, Xs)
PART_4_IN_GGAA2(X, ._21(Xs)) -> IF_PART_4_IN_1_GGAA3(X, Xs, less_2_in_ga1(X))

The TRS R consists of the following rules:

less_2_in_ga1(0_0) -> less_2_out_ga2(0_0, s_1)
less_2_in_ga1(s_1) -> if_less_2_in_1_ga1(less_2_in_aa)
if_less_2_in_1_ga1(less_2_out_aa2(X, Y)) -> less_2_out_ga2(s_1, s_1)
less_2_in_aa -> less_2_out_aa2(0_0, s_1)
less_2_in_aa -> if_less_2_in_1_aa1(less_2_in_aa)
if_less_2_in_1_aa1(less_2_out_aa2(X, Y)) -> less_2_out_aa2(s_1, s_1)

The set Q consists of the following terms:

less_2_in_ga1(x0)
if_less_2_in_1_ga1(x0)
less_2_in_aa
if_less_2_in_1_aa1(x0)

We have to consider all (P,Q,R)-chains.
By using the subterm criterion together with the size-change analysis we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
PiDP
                ↳ UsableRulesProof
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

PART_4_IN_AGAA4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> PART_4_IN_AGAA4(X, Xs, Ls, Bs)

The TRS R consists of the following rules:

qs_2_in_ag2([]_0, []_0) -> qs_2_out_ag2([]_0, []_0)
qs_2_in_ag2(._22(X, Xs), Ys) -> if_qs_2_in_1_ag4(X, Xs, Ys, part_4_in_aaaa4(X, Xs, Littles, Bigs))
part_4_in_aaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_aaaa6(X, Y, Xs, Ls, Bs, less_2_in_aa2(X, Y))
less_2_in_aa2(0_0, s_11(underscore1)) -> less_2_out_aa2(0_0, s_11(underscore1))
less_2_in_aa2(s_11(X), s_11(Y)) -> if_less_2_in_1_aa3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_aa3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_aa2(s_11(X), s_11(Y))
if_part_4_in_1_aaaa6(X, Y, Xs, Ls, Bs, less_2_out_aa2(X, Y)) -> if_part_4_in_2_aaaa6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
part_4_in_gaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_gaaa6(X, Y, Xs, Ls, Bs, less_2_in_ga2(X, Y))
less_2_in_ga2(0_0, s_11(underscore1)) -> less_2_out_ga2(0_0, s_11(underscore1))
less_2_in_ga2(s_11(X), s_11(Y)) -> if_less_2_in_1_ga3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_ga3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_ga2(s_11(X), s_11(Y))
if_part_4_in_1_gaaa6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> if_part_4_in_2_gaaa6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
part_4_in_gaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_gaaa6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
part_4_in_gaaa4(underscore, []_0, []_0, []_0) -> part_4_out_gaaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_gaaa6(X, Y, Xs, Ls, Bs, part_4_out_gaaa4(X, Xs, Ls, Bs)) -> part_4_out_gaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_part_4_in_2_gaaa6(X, Y, Xs, Ls, Bs, part_4_out_gaaa4(X, Xs, Ls, Bs)) -> part_4_out_gaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
if_part_4_in_2_aaaa6(X, Y, Xs, Ls, Bs, part_4_out_gaaa4(X, Xs, Ls, Bs)) -> part_4_out_aaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
part_4_in_aaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_aaaa6(X, Y, Xs, Ls, Bs, part_4_in_aaaa4(X, Xs, Ls, Bs))
part_4_in_aaaa4(underscore, []_0, []_0, []_0) -> part_4_out_aaaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_aaaa6(X, Y, Xs, Ls, Bs, part_4_out_aaaa4(X, Xs, Ls, Bs)) -> part_4_out_aaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_qs_2_in_1_ag4(X, Xs, Ys, part_4_out_aaaa4(X, Xs, Littles, Bigs)) -> if_qs_2_in_2_ag6(X, Xs, Ys, Littles, Bigs, qs_2_in_ga2(Littles, Ls))
qs_2_in_ga2([]_0, []_0) -> qs_2_out_ga2([]_0, []_0)
qs_2_in_ga2(._22(X, Xs), Ys) -> if_qs_2_in_1_ga4(X, Xs, Ys, part_4_in_agaa4(X, Xs, Littles, Bigs))
part_4_in_agaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_agaa6(X, Y, Xs, Ls, Bs, less_2_in_aa2(X, Y))
if_part_4_in_1_agaa6(X, Y, Xs, Ls, Bs, less_2_out_aa2(X, Y)) -> if_part_4_in_2_agaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_ggaa6(X, Y, Xs, Ls, Bs, less_2_in_ga2(X, Y))
if_part_4_in_1_ggaa6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> if_part_4_in_2_ggaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_ggaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(underscore, []_0, []_0, []_0) -> part_4_out_ggaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_ggaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_ggaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_part_4_in_2_ggaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_ggaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
if_part_4_in_2_agaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_agaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
part_4_in_agaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_agaa6(X, Y, Xs, Ls, Bs, part_4_in_agaa4(X, Xs, Ls, Bs))
part_4_in_agaa4(underscore, []_0, []_0, []_0) -> part_4_out_agaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_agaa6(X, Y, Xs, Ls, Bs, part_4_out_agaa4(X, Xs, Ls, Bs)) -> part_4_out_agaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_qs_2_in_1_ga4(X, Xs, Ys, part_4_out_agaa4(X, Xs, Littles, Bigs)) -> if_qs_2_in_2_ga6(X, Xs, Ys, Littles, Bigs, qs_2_in_ga2(Littles, Ls))
if_qs_2_in_2_ga6(X, Xs, Ys, Littles, Bigs, qs_2_out_ga2(Littles, Ls)) -> if_qs_2_in_3_ga6(X, Xs, Ys, Bigs, Ls, qs_2_in_ga2(Bigs, Bs))
if_qs_2_in_3_ga6(X, Xs, Ys, Bigs, Ls, qs_2_out_ga2(Bigs, Bs)) -> if_qs_2_in_4_ga6(X, Xs, Ys, Ls, Bs, app_3_in_gga3(Ls, ._22(X, Bs), Ys))
app_3_in_gga3([]_0, X, X) -> app_3_out_gga3([]_0, X, X)
app_3_in_gga3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_gga5(X, Xs, Ys, Zs, app_3_in_gga3(Xs, Ys, Zs))
if_app_3_in_1_gga5(X, Xs, Ys, Zs, app_3_out_gga3(Xs, Ys, Zs)) -> app_3_out_gga3(._22(X, Xs), Ys, ._22(X, Zs))
if_qs_2_in_4_ga6(X, Xs, Ys, Ls, Bs, app_3_out_gga3(Ls, ._22(X, Bs), Ys)) -> qs_2_out_ga2(._22(X, Xs), Ys)
if_qs_2_in_2_ag6(X, Xs, Ys, Littles, Bigs, qs_2_out_ga2(Littles, Ls)) -> if_qs_2_in_3_ag6(X, Xs, Ys, Bigs, Ls, qs_2_in_ga2(Bigs, Bs))
if_qs_2_in_3_ag6(X, Xs, Ys, Bigs, Ls, qs_2_out_ga2(Bigs, Bs)) -> if_qs_2_in_4_ag6(X, Xs, Ys, Ls, Bs, app_3_in_ggg3(Ls, ._22(X, Bs), Ys))
app_3_in_ggg3([]_0, X, X) -> app_3_out_ggg3([]_0, X, X)
app_3_in_ggg3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_ggg5(X, Xs, Ys, Zs, app_3_in_ggg3(Xs, Ys, Zs))
if_app_3_in_1_ggg5(X, Xs, Ys, Zs, app_3_out_ggg3(Xs, Ys, Zs)) -> app_3_out_ggg3(._22(X, Xs), Ys, ._22(X, Zs))
if_qs_2_in_4_ag6(X, Xs, Ys, Ls, Bs, app_3_out_ggg3(Ls, ._22(X, Bs), Ys)) -> qs_2_out_ag2(._22(X, Xs), Ys)

The argument filtering Pi contains the following mapping:
qs_2_in_ag2(x1, x2)  =  qs_2_in_ag1(x2)
[]_0  =  []_0
._22(x1, x2)  =  ._21(x2)
0_0  =  0_0
s_11(x1)  =  s_1
qs_2_out_ag2(x1, x2)  =  qs_2_out_ag2(x1, x2)
if_qs_2_in_1_ag4(x1, x2, x3, x4)  =  if_qs_2_in_1_ag2(x3, x4)
part_4_in_aaaa4(x1, x2, x3, x4)  =  part_4_in_aaaa
if_part_4_in_1_aaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_aaaa1(x6)
less_2_in_aa2(x1, x2)  =  less_2_in_aa
less_2_out_aa2(x1, x2)  =  less_2_out_aa2(x1, x2)
if_less_2_in_1_aa3(x1, x2, x3)  =  if_less_2_in_1_aa1(x3)
if_part_4_in_2_aaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_aaaa1(x6)
part_4_in_gaaa4(x1, x2, x3, x4)  =  part_4_in_gaaa1(x1)
if_part_4_in_1_gaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_gaaa2(x1, x6)
less_2_in_ga2(x1, x2)  =  less_2_in_ga1(x1)
less_2_out_ga2(x1, x2)  =  less_2_out_ga2(x1, x2)
if_less_2_in_1_ga3(x1, x2, x3)  =  if_less_2_in_1_ga1(x3)
if_part_4_in_2_gaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_gaaa2(x1, x6)
if_part_4_in_3_gaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_gaaa2(x1, x6)
part_4_out_gaaa4(x1, x2, x3, x4)  =  part_4_out_gaaa4(x1, x2, x3, x4)
part_4_out_aaaa4(x1, x2, x3, x4)  =  part_4_out_aaaa3(x2, x3, x4)
if_part_4_in_3_aaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_aaaa1(x6)
if_qs_2_in_2_ag6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_2_ag4(x2, x3, x5, x6)
qs_2_in_ga2(x1, x2)  =  qs_2_in_ga1(x1)
qs_2_out_ga2(x1, x2)  =  qs_2_out_ga2(x1, x2)
if_qs_2_in_1_ga4(x1, x2, x3, x4)  =  if_qs_2_in_1_ga2(x2, x4)
part_4_in_agaa4(x1, x2, x3, x4)  =  part_4_in_agaa1(x2)
if_part_4_in_1_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_agaa2(x3, x6)
if_part_4_in_2_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_agaa2(x3, x6)
part_4_in_ggaa4(x1, x2, x3, x4)  =  part_4_in_ggaa2(x1, x2)
if_part_4_in_1_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_ggaa3(x1, x3, x6)
if_part_4_in_2_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_ggaa3(x1, x3, x6)
if_part_4_in_3_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_ggaa3(x1, x3, x6)
part_4_out_ggaa4(x1, x2, x3, x4)  =  part_4_out_ggaa4(x1, x2, x3, x4)
part_4_out_agaa4(x1, x2, x3, x4)  =  part_4_out_agaa3(x2, x3, x4)
if_part_4_in_3_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_agaa2(x3, x6)
if_qs_2_in_2_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_2_ga3(x2, x5, x6)
if_qs_2_in_3_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_3_ga3(x2, x5, x6)
if_qs_2_in_4_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_4_ga2(x2, x6)
app_3_in_gga3(x1, x2, x3)  =  app_3_in_gga2(x1, x2)
app_3_out_gga3(x1, x2, x3)  =  app_3_out_gga3(x1, x2, x3)
if_app_3_in_1_gga5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_gga3(x2, x3, x5)
if_qs_2_in_3_ag6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_3_ag4(x2, x3, x5, x6)
if_qs_2_in_4_ag6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_4_ag3(x2, x3, x6)
app_3_in_ggg3(x1, x2, x3)  =  app_3_in_ggg3(x1, x2, x3)
app_3_out_ggg3(x1, x2, x3)  =  app_3_out_ggg3(x1, x2, x3)
if_app_3_in_1_ggg5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_ggg4(x2, x3, x4, x5)
PART_4_IN_AGAA4(x1, x2, x3, x4)  =  PART_4_IN_AGAA1(x2)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

PART_4_IN_AGAA4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> PART_4_IN_AGAA4(X, Xs, Ls, Bs)

R is empty.
The argument filtering Pi contains the following mapping:
._22(x1, x2)  =  ._21(x2)
PART_4_IN_AGAA4(x1, x2, x3, x4)  =  PART_4_IN_AGAA1(x2)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP

Q DP problem:
The TRS P consists of the following rules:

PART_4_IN_AGAA1(._21(Xs)) -> PART_4_IN_AGAA1(Xs)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
By using the subterm criterion together with the size-change analysis we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
PiDP
                ↳ UsableRulesProof
              ↳ PiDP
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

IF_QS_2_IN_2_GA6(X, Xs, Ys, Littles, Bigs, qs_2_out_ga2(Littles, Ls)) -> QS_2_IN_GA2(Bigs, Bs)
IF_QS_2_IN_1_GA4(X, Xs, Ys, part_4_out_agaa4(X, Xs, Littles, Bigs)) -> IF_QS_2_IN_2_GA6(X, Xs, Ys, Littles, Bigs, qs_2_in_ga2(Littles, Ls))
IF_QS_2_IN_1_GA4(X, Xs, Ys, part_4_out_agaa4(X, Xs, Littles, Bigs)) -> QS_2_IN_GA2(Littles, Ls)
QS_2_IN_GA2(._22(X, Xs), Ys) -> IF_QS_2_IN_1_GA4(X, Xs, Ys, part_4_in_agaa4(X, Xs, Littles, Bigs))

The TRS R consists of the following rules:

qs_2_in_ag2([]_0, []_0) -> qs_2_out_ag2([]_0, []_0)
qs_2_in_ag2(._22(X, Xs), Ys) -> if_qs_2_in_1_ag4(X, Xs, Ys, part_4_in_aaaa4(X, Xs, Littles, Bigs))
part_4_in_aaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_aaaa6(X, Y, Xs, Ls, Bs, less_2_in_aa2(X, Y))
less_2_in_aa2(0_0, s_11(underscore1)) -> less_2_out_aa2(0_0, s_11(underscore1))
less_2_in_aa2(s_11(X), s_11(Y)) -> if_less_2_in_1_aa3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_aa3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_aa2(s_11(X), s_11(Y))
if_part_4_in_1_aaaa6(X, Y, Xs, Ls, Bs, less_2_out_aa2(X, Y)) -> if_part_4_in_2_aaaa6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
part_4_in_gaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_gaaa6(X, Y, Xs, Ls, Bs, less_2_in_ga2(X, Y))
less_2_in_ga2(0_0, s_11(underscore1)) -> less_2_out_ga2(0_0, s_11(underscore1))
less_2_in_ga2(s_11(X), s_11(Y)) -> if_less_2_in_1_ga3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_ga3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_ga2(s_11(X), s_11(Y))
if_part_4_in_1_gaaa6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> if_part_4_in_2_gaaa6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
part_4_in_gaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_gaaa6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
part_4_in_gaaa4(underscore, []_0, []_0, []_0) -> part_4_out_gaaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_gaaa6(X, Y, Xs, Ls, Bs, part_4_out_gaaa4(X, Xs, Ls, Bs)) -> part_4_out_gaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_part_4_in_2_gaaa6(X, Y, Xs, Ls, Bs, part_4_out_gaaa4(X, Xs, Ls, Bs)) -> part_4_out_gaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
if_part_4_in_2_aaaa6(X, Y, Xs, Ls, Bs, part_4_out_gaaa4(X, Xs, Ls, Bs)) -> part_4_out_aaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
part_4_in_aaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_aaaa6(X, Y, Xs, Ls, Bs, part_4_in_aaaa4(X, Xs, Ls, Bs))
part_4_in_aaaa4(underscore, []_0, []_0, []_0) -> part_4_out_aaaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_aaaa6(X, Y, Xs, Ls, Bs, part_4_out_aaaa4(X, Xs, Ls, Bs)) -> part_4_out_aaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_qs_2_in_1_ag4(X, Xs, Ys, part_4_out_aaaa4(X, Xs, Littles, Bigs)) -> if_qs_2_in_2_ag6(X, Xs, Ys, Littles, Bigs, qs_2_in_ga2(Littles, Ls))
qs_2_in_ga2([]_0, []_0) -> qs_2_out_ga2([]_0, []_0)
qs_2_in_ga2(._22(X, Xs), Ys) -> if_qs_2_in_1_ga4(X, Xs, Ys, part_4_in_agaa4(X, Xs, Littles, Bigs))
part_4_in_agaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_agaa6(X, Y, Xs, Ls, Bs, less_2_in_aa2(X, Y))
if_part_4_in_1_agaa6(X, Y, Xs, Ls, Bs, less_2_out_aa2(X, Y)) -> if_part_4_in_2_agaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_ggaa6(X, Y, Xs, Ls, Bs, less_2_in_ga2(X, Y))
if_part_4_in_1_ggaa6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> if_part_4_in_2_ggaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_ggaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(underscore, []_0, []_0, []_0) -> part_4_out_ggaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_ggaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_ggaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_part_4_in_2_ggaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_ggaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
if_part_4_in_2_agaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_agaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
part_4_in_agaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_agaa6(X, Y, Xs, Ls, Bs, part_4_in_agaa4(X, Xs, Ls, Bs))
part_4_in_agaa4(underscore, []_0, []_0, []_0) -> part_4_out_agaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_agaa6(X, Y, Xs, Ls, Bs, part_4_out_agaa4(X, Xs, Ls, Bs)) -> part_4_out_agaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_qs_2_in_1_ga4(X, Xs, Ys, part_4_out_agaa4(X, Xs, Littles, Bigs)) -> if_qs_2_in_2_ga6(X, Xs, Ys, Littles, Bigs, qs_2_in_ga2(Littles, Ls))
if_qs_2_in_2_ga6(X, Xs, Ys, Littles, Bigs, qs_2_out_ga2(Littles, Ls)) -> if_qs_2_in_3_ga6(X, Xs, Ys, Bigs, Ls, qs_2_in_ga2(Bigs, Bs))
if_qs_2_in_3_ga6(X, Xs, Ys, Bigs, Ls, qs_2_out_ga2(Bigs, Bs)) -> if_qs_2_in_4_ga6(X, Xs, Ys, Ls, Bs, app_3_in_gga3(Ls, ._22(X, Bs), Ys))
app_3_in_gga3([]_0, X, X) -> app_3_out_gga3([]_0, X, X)
app_3_in_gga3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_gga5(X, Xs, Ys, Zs, app_3_in_gga3(Xs, Ys, Zs))
if_app_3_in_1_gga5(X, Xs, Ys, Zs, app_3_out_gga3(Xs, Ys, Zs)) -> app_3_out_gga3(._22(X, Xs), Ys, ._22(X, Zs))
if_qs_2_in_4_ga6(X, Xs, Ys, Ls, Bs, app_3_out_gga3(Ls, ._22(X, Bs), Ys)) -> qs_2_out_ga2(._22(X, Xs), Ys)
if_qs_2_in_2_ag6(X, Xs, Ys, Littles, Bigs, qs_2_out_ga2(Littles, Ls)) -> if_qs_2_in_3_ag6(X, Xs, Ys, Bigs, Ls, qs_2_in_ga2(Bigs, Bs))
if_qs_2_in_3_ag6(X, Xs, Ys, Bigs, Ls, qs_2_out_ga2(Bigs, Bs)) -> if_qs_2_in_4_ag6(X, Xs, Ys, Ls, Bs, app_3_in_ggg3(Ls, ._22(X, Bs), Ys))
app_3_in_ggg3([]_0, X, X) -> app_3_out_ggg3([]_0, X, X)
app_3_in_ggg3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_ggg5(X, Xs, Ys, Zs, app_3_in_ggg3(Xs, Ys, Zs))
if_app_3_in_1_ggg5(X, Xs, Ys, Zs, app_3_out_ggg3(Xs, Ys, Zs)) -> app_3_out_ggg3(._22(X, Xs), Ys, ._22(X, Zs))
if_qs_2_in_4_ag6(X, Xs, Ys, Ls, Bs, app_3_out_ggg3(Ls, ._22(X, Bs), Ys)) -> qs_2_out_ag2(._22(X, Xs), Ys)

The argument filtering Pi contains the following mapping:
qs_2_in_ag2(x1, x2)  =  qs_2_in_ag1(x2)
[]_0  =  []_0
._22(x1, x2)  =  ._21(x2)
0_0  =  0_0
s_11(x1)  =  s_1
qs_2_out_ag2(x1, x2)  =  qs_2_out_ag2(x1, x2)
if_qs_2_in_1_ag4(x1, x2, x3, x4)  =  if_qs_2_in_1_ag2(x3, x4)
part_4_in_aaaa4(x1, x2, x3, x4)  =  part_4_in_aaaa
if_part_4_in_1_aaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_aaaa1(x6)
less_2_in_aa2(x1, x2)  =  less_2_in_aa
less_2_out_aa2(x1, x2)  =  less_2_out_aa2(x1, x2)
if_less_2_in_1_aa3(x1, x2, x3)  =  if_less_2_in_1_aa1(x3)
if_part_4_in_2_aaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_aaaa1(x6)
part_4_in_gaaa4(x1, x2, x3, x4)  =  part_4_in_gaaa1(x1)
if_part_4_in_1_gaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_gaaa2(x1, x6)
less_2_in_ga2(x1, x2)  =  less_2_in_ga1(x1)
less_2_out_ga2(x1, x2)  =  less_2_out_ga2(x1, x2)
if_less_2_in_1_ga3(x1, x2, x3)  =  if_less_2_in_1_ga1(x3)
if_part_4_in_2_gaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_gaaa2(x1, x6)
if_part_4_in_3_gaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_gaaa2(x1, x6)
part_4_out_gaaa4(x1, x2, x3, x4)  =  part_4_out_gaaa4(x1, x2, x3, x4)
part_4_out_aaaa4(x1, x2, x3, x4)  =  part_4_out_aaaa3(x2, x3, x4)
if_part_4_in_3_aaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_aaaa1(x6)
if_qs_2_in_2_ag6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_2_ag4(x2, x3, x5, x6)
qs_2_in_ga2(x1, x2)  =  qs_2_in_ga1(x1)
qs_2_out_ga2(x1, x2)  =  qs_2_out_ga2(x1, x2)
if_qs_2_in_1_ga4(x1, x2, x3, x4)  =  if_qs_2_in_1_ga2(x2, x4)
part_4_in_agaa4(x1, x2, x3, x4)  =  part_4_in_agaa1(x2)
if_part_4_in_1_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_agaa2(x3, x6)
if_part_4_in_2_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_agaa2(x3, x6)
part_4_in_ggaa4(x1, x2, x3, x4)  =  part_4_in_ggaa2(x1, x2)
if_part_4_in_1_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_ggaa3(x1, x3, x6)
if_part_4_in_2_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_ggaa3(x1, x3, x6)
if_part_4_in_3_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_ggaa3(x1, x3, x6)
part_4_out_ggaa4(x1, x2, x3, x4)  =  part_4_out_ggaa4(x1, x2, x3, x4)
part_4_out_agaa4(x1, x2, x3, x4)  =  part_4_out_agaa3(x2, x3, x4)
if_part_4_in_3_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_agaa2(x3, x6)
if_qs_2_in_2_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_2_ga3(x2, x5, x6)
if_qs_2_in_3_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_3_ga3(x2, x5, x6)
if_qs_2_in_4_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_4_ga2(x2, x6)
app_3_in_gga3(x1, x2, x3)  =  app_3_in_gga2(x1, x2)
app_3_out_gga3(x1, x2, x3)  =  app_3_out_gga3(x1, x2, x3)
if_app_3_in_1_gga5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_gga3(x2, x3, x5)
if_qs_2_in_3_ag6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_3_ag4(x2, x3, x5, x6)
if_qs_2_in_4_ag6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_4_ag3(x2, x3, x6)
app_3_in_ggg3(x1, x2, x3)  =  app_3_in_ggg3(x1, x2, x3)
app_3_out_ggg3(x1, x2, x3)  =  app_3_out_ggg3(x1, x2, x3)
if_app_3_in_1_ggg5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_ggg4(x2, x3, x4, x5)
IF_QS_2_IN_2_GA6(x1, x2, x3, x4, x5, x6)  =  IF_QS_2_IN_2_GA3(x2, x5, x6)
QS_2_IN_GA2(x1, x2)  =  QS_2_IN_GA1(x1)
IF_QS_2_IN_1_GA4(x1, x2, x3, x4)  =  IF_QS_2_IN_1_GA2(x2, x4)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
              ↳ PiDP
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

IF_QS_2_IN_2_GA6(X, Xs, Ys, Littles, Bigs, qs_2_out_ga2(Littles, Ls)) -> QS_2_IN_GA2(Bigs, Bs)
IF_QS_2_IN_1_GA4(X, Xs, Ys, part_4_out_agaa4(X, Xs, Littles, Bigs)) -> IF_QS_2_IN_2_GA6(X, Xs, Ys, Littles, Bigs, qs_2_in_ga2(Littles, Ls))
IF_QS_2_IN_1_GA4(X, Xs, Ys, part_4_out_agaa4(X, Xs, Littles, Bigs)) -> QS_2_IN_GA2(Littles, Ls)
QS_2_IN_GA2(._22(X, Xs), Ys) -> IF_QS_2_IN_1_GA4(X, Xs, Ys, part_4_in_agaa4(X, Xs, Littles, Bigs))

The TRS R consists of the following rules:

qs_2_in_ga2([]_0, []_0) -> qs_2_out_ga2([]_0, []_0)
qs_2_in_ga2(._22(X, Xs), Ys) -> if_qs_2_in_1_ga4(X, Xs, Ys, part_4_in_agaa4(X, Xs, Littles, Bigs))
part_4_in_agaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_agaa6(X, Y, Xs, Ls, Bs, less_2_in_aa2(X, Y))
part_4_in_agaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_agaa6(X, Y, Xs, Ls, Bs, part_4_in_agaa4(X, Xs, Ls, Bs))
part_4_in_agaa4(underscore, []_0, []_0, []_0) -> part_4_out_agaa4(underscore, []_0, []_0, []_0)
if_qs_2_in_1_ga4(X, Xs, Ys, part_4_out_agaa4(X, Xs, Littles, Bigs)) -> if_qs_2_in_2_ga6(X, Xs, Ys, Littles, Bigs, qs_2_in_ga2(Littles, Ls))
if_part_4_in_1_agaa6(X, Y, Xs, Ls, Bs, less_2_out_aa2(X, Y)) -> if_part_4_in_2_agaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
if_part_4_in_3_agaa6(X, Y, Xs, Ls, Bs, part_4_out_agaa4(X, Xs, Ls, Bs)) -> part_4_out_agaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_qs_2_in_2_ga6(X, Xs, Ys, Littles, Bigs, qs_2_out_ga2(Littles, Ls)) -> if_qs_2_in_3_ga6(X, Xs, Ys, Bigs, Ls, qs_2_in_ga2(Bigs, Bs))
less_2_in_aa2(0_0, s_11(underscore1)) -> less_2_out_aa2(0_0, s_11(underscore1))
less_2_in_aa2(s_11(X), s_11(Y)) -> if_less_2_in_1_aa3(X, Y, less_2_in_aa2(X, Y))
if_part_4_in_2_agaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_agaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
if_qs_2_in_3_ga6(X, Xs, Ys, Bigs, Ls, qs_2_out_ga2(Bigs, Bs)) -> if_qs_2_in_4_ga6(X, Xs, Ys, Ls, Bs, app_3_in_gga3(Ls, ._22(X, Bs), Ys))
if_less_2_in_1_aa3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_aa2(s_11(X), s_11(Y))
part_4_in_ggaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_ggaa6(X, Y, Xs, Ls, Bs, less_2_in_ga2(X, Y))
part_4_in_ggaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_ggaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(underscore, []_0, []_0, []_0) -> part_4_out_ggaa4(underscore, []_0, []_0, []_0)
if_qs_2_in_4_ga6(X, Xs, Ys, Ls, Bs, app_3_out_gga3(Ls, ._22(X, Bs), Ys)) -> qs_2_out_ga2(._22(X, Xs), Ys)
if_part_4_in_1_ggaa6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> if_part_4_in_2_ggaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
if_part_4_in_3_ggaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_ggaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
app_3_in_gga3([]_0, X, X) -> app_3_out_gga3([]_0, X, X)
app_3_in_gga3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_gga5(X, Xs, Ys, Zs, app_3_in_gga3(Xs, Ys, Zs))
less_2_in_ga2(0_0, s_11(underscore1)) -> less_2_out_ga2(0_0, s_11(underscore1))
less_2_in_ga2(s_11(X), s_11(Y)) -> if_less_2_in_1_ga3(X, Y, less_2_in_aa2(X, Y))
if_part_4_in_2_ggaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_ggaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
if_app_3_in_1_gga5(X, Xs, Ys, Zs, app_3_out_gga3(Xs, Ys, Zs)) -> app_3_out_gga3(._22(X, Xs), Ys, ._22(X, Zs))
if_less_2_in_1_ga3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_ga2(s_11(X), s_11(Y))

The argument filtering Pi contains the following mapping:
[]_0  =  []_0
._22(x1, x2)  =  ._21(x2)
0_0  =  0_0
s_11(x1)  =  s_1
less_2_in_aa2(x1, x2)  =  less_2_in_aa
less_2_out_aa2(x1, x2)  =  less_2_out_aa2(x1, x2)
if_less_2_in_1_aa3(x1, x2, x3)  =  if_less_2_in_1_aa1(x3)
less_2_in_ga2(x1, x2)  =  less_2_in_ga1(x1)
less_2_out_ga2(x1, x2)  =  less_2_out_ga2(x1, x2)
if_less_2_in_1_ga3(x1, x2, x3)  =  if_less_2_in_1_ga1(x3)
qs_2_in_ga2(x1, x2)  =  qs_2_in_ga1(x1)
qs_2_out_ga2(x1, x2)  =  qs_2_out_ga2(x1, x2)
if_qs_2_in_1_ga4(x1, x2, x3, x4)  =  if_qs_2_in_1_ga2(x2, x4)
part_4_in_agaa4(x1, x2, x3, x4)  =  part_4_in_agaa1(x2)
if_part_4_in_1_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_agaa2(x3, x6)
if_part_4_in_2_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_agaa2(x3, x6)
part_4_in_ggaa4(x1, x2, x3, x4)  =  part_4_in_ggaa2(x1, x2)
if_part_4_in_1_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_ggaa3(x1, x3, x6)
if_part_4_in_2_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_ggaa3(x1, x3, x6)
if_part_4_in_3_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_ggaa3(x1, x3, x6)
part_4_out_ggaa4(x1, x2, x3, x4)  =  part_4_out_ggaa4(x1, x2, x3, x4)
part_4_out_agaa4(x1, x2, x3, x4)  =  part_4_out_agaa3(x2, x3, x4)
if_part_4_in_3_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_agaa2(x3, x6)
if_qs_2_in_2_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_2_ga3(x2, x5, x6)
if_qs_2_in_3_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_3_ga3(x2, x5, x6)
if_qs_2_in_4_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_4_ga2(x2, x6)
app_3_in_gga3(x1, x2, x3)  =  app_3_in_gga2(x1, x2)
app_3_out_gga3(x1, x2, x3)  =  app_3_out_gga3(x1, x2, x3)
if_app_3_in_1_gga5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_gga3(x2, x3, x5)
IF_QS_2_IN_2_GA6(x1, x2, x3, x4, x5, x6)  =  IF_QS_2_IN_2_GA3(x2, x5, x6)
QS_2_IN_GA2(x1, x2)  =  QS_2_IN_GA1(x1)
IF_QS_2_IN_1_GA4(x1, x2, x3, x4)  =  IF_QS_2_IN_1_GA2(x2, x4)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
              ↳ PiDP
              ↳ PiDP

Q DP problem:
The TRS P consists of the following rules:

IF_QS_2_IN_1_GA2(Xs, part_4_out_agaa3(Xs, Littles, Bigs)) -> QS_2_IN_GA1(Littles)
IF_QS_2_IN_2_GA3(Xs, Bigs, qs_2_out_ga2(Littles, Ls)) -> QS_2_IN_GA1(Bigs)
QS_2_IN_GA1(._21(Xs)) -> IF_QS_2_IN_1_GA2(Xs, part_4_in_agaa1(Xs))
IF_QS_2_IN_1_GA2(Xs, part_4_out_agaa3(Xs, Littles, Bigs)) -> IF_QS_2_IN_2_GA3(Xs, Bigs, qs_2_in_ga1(Littles))

The TRS R consists of the following rules:

qs_2_in_ga1([]_0) -> qs_2_out_ga2([]_0, []_0)
qs_2_in_ga1(._21(Xs)) -> if_qs_2_in_1_ga2(Xs, part_4_in_agaa1(Xs))
part_4_in_agaa1(._21(Xs)) -> if_part_4_in_1_agaa2(Xs, less_2_in_aa)
part_4_in_agaa1(._21(Xs)) -> if_part_4_in_3_agaa2(Xs, part_4_in_agaa1(Xs))
part_4_in_agaa1([]_0) -> part_4_out_agaa3([]_0, []_0, []_0)
if_qs_2_in_1_ga2(Xs, part_4_out_agaa3(Xs, Littles, Bigs)) -> if_qs_2_in_2_ga3(Xs, Bigs, qs_2_in_ga1(Littles))
if_part_4_in_1_agaa2(Xs, less_2_out_aa2(X, Y)) -> if_part_4_in_2_agaa2(Xs, part_4_in_ggaa2(X, Xs))
if_part_4_in_3_agaa2(Xs, part_4_out_agaa3(Xs, Ls, Bs)) -> part_4_out_agaa3(._21(Xs), Ls, ._21(Bs))
if_qs_2_in_2_ga3(Xs, Bigs, qs_2_out_ga2(Littles, Ls)) -> if_qs_2_in_3_ga3(Xs, Ls, qs_2_in_ga1(Bigs))
less_2_in_aa -> less_2_out_aa2(0_0, s_1)
less_2_in_aa -> if_less_2_in_1_aa1(less_2_in_aa)
if_part_4_in_2_agaa2(Xs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_agaa3(._21(Xs), ._21(Ls), Bs)
if_qs_2_in_3_ga3(Xs, Ls, qs_2_out_ga2(Bigs, Bs)) -> if_qs_2_in_4_ga2(Xs, app_3_in_gga2(Ls, ._21(Bs)))
if_less_2_in_1_aa1(less_2_out_aa2(X, Y)) -> less_2_out_aa2(s_1, s_1)
part_4_in_ggaa2(X, ._21(Xs)) -> if_part_4_in_1_ggaa3(X, Xs, less_2_in_ga1(X))
part_4_in_ggaa2(X, ._21(Xs)) -> if_part_4_in_3_ggaa3(X, Xs, part_4_in_ggaa2(X, Xs))
part_4_in_ggaa2(underscore, []_0) -> part_4_out_ggaa4(underscore, []_0, []_0, []_0)
if_qs_2_in_4_ga2(Xs, app_3_out_gga3(Ls, ._21(Bs), Ys)) -> qs_2_out_ga2(._21(Xs), Ys)
if_part_4_in_1_ggaa3(X, Xs, less_2_out_ga2(X, Y)) -> if_part_4_in_2_ggaa3(X, Xs, part_4_in_ggaa2(X, Xs))
if_part_4_in_3_ggaa3(X, Xs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_ggaa4(X, ._21(Xs), Ls, ._21(Bs))
app_3_in_gga2([]_0, X) -> app_3_out_gga3([]_0, X, X)
app_3_in_gga2(._21(Xs), Ys) -> if_app_3_in_1_gga3(Xs, Ys, app_3_in_gga2(Xs, Ys))
less_2_in_ga1(0_0) -> less_2_out_ga2(0_0, s_1)
less_2_in_ga1(s_1) -> if_less_2_in_1_ga1(less_2_in_aa)
if_part_4_in_2_ggaa3(X, Xs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_ggaa4(X, ._21(Xs), ._21(Ls), Bs)
if_app_3_in_1_gga3(Xs, Ys, app_3_out_gga3(Xs, Ys, Zs)) -> app_3_out_gga3(._21(Xs), Ys, ._21(Zs))
if_less_2_in_1_ga1(less_2_out_aa2(X, Y)) -> less_2_out_ga2(s_1, s_1)

The set Q consists of the following terms:

qs_2_in_ga1(x0)
part_4_in_agaa1(x0)
if_qs_2_in_1_ga2(x0, x1)
if_part_4_in_1_agaa2(x0, x1)
if_part_4_in_3_agaa2(x0, x1)
if_qs_2_in_2_ga3(x0, x1, x2)
less_2_in_aa
if_part_4_in_2_agaa2(x0, x1)
if_qs_2_in_3_ga3(x0, x1, x2)
if_less_2_in_1_aa1(x0)
part_4_in_ggaa2(x0, x1)
if_qs_2_in_4_ga2(x0, x1)
if_part_4_in_1_ggaa3(x0, x1, x2)
if_part_4_in_3_ggaa3(x0, x1, x2)
app_3_in_gga2(x0, x1)
less_2_in_ga1(x0)
if_part_4_in_2_ggaa3(x0, x1, x2)
if_app_3_in_1_gga3(x0, x1, x2)
if_less_2_in_1_ga1(x0)

We have to consider all (P,Q,R)-chains.

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
PiDP
                ↳ UsableRulesProof
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

PART_4_IN_GAAA4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> IF_PART_4_IN_1_GAAA6(X, Y, Xs, Ls, Bs, less_2_in_ga2(X, Y))
PART_4_IN_GAAA4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> PART_4_IN_GAAA4(X, Xs, Ls, Bs)
IF_PART_4_IN_1_GAAA6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> PART_4_IN_GAAA4(X, Xs, Ls, Bs)

The TRS R consists of the following rules:

qs_2_in_ag2([]_0, []_0) -> qs_2_out_ag2([]_0, []_0)
qs_2_in_ag2(._22(X, Xs), Ys) -> if_qs_2_in_1_ag4(X, Xs, Ys, part_4_in_aaaa4(X, Xs, Littles, Bigs))
part_4_in_aaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_aaaa6(X, Y, Xs, Ls, Bs, less_2_in_aa2(X, Y))
less_2_in_aa2(0_0, s_11(underscore1)) -> less_2_out_aa2(0_0, s_11(underscore1))
less_2_in_aa2(s_11(X), s_11(Y)) -> if_less_2_in_1_aa3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_aa3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_aa2(s_11(X), s_11(Y))
if_part_4_in_1_aaaa6(X, Y, Xs, Ls, Bs, less_2_out_aa2(X, Y)) -> if_part_4_in_2_aaaa6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
part_4_in_gaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_gaaa6(X, Y, Xs, Ls, Bs, less_2_in_ga2(X, Y))
less_2_in_ga2(0_0, s_11(underscore1)) -> less_2_out_ga2(0_0, s_11(underscore1))
less_2_in_ga2(s_11(X), s_11(Y)) -> if_less_2_in_1_ga3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_ga3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_ga2(s_11(X), s_11(Y))
if_part_4_in_1_gaaa6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> if_part_4_in_2_gaaa6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
part_4_in_gaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_gaaa6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
part_4_in_gaaa4(underscore, []_0, []_0, []_0) -> part_4_out_gaaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_gaaa6(X, Y, Xs, Ls, Bs, part_4_out_gaaa4(X, Xs, Ls, Bs)) -> part_4_out_gaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_part_4_in_2_gaaa6(X, Y, Xs, Ls, Bs, part_4_out_gaaa4(X, Xs, Ls, Bs)) -> part_4_out_gaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
if_part_4_in_2_aaaa6(X, Y, Xs, Ls, Bs, part_4_out_gaaa4(X, Xs, Ls, Bs)) -> part_4_out_aaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
part_4_in_aaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_aaaa6(X, Y, Xs, Ls, Bs, part_4_in_aaaa4(X, Xs, Ls, Bs))
part_4_in_aaaa4(underscore, []_0, []_0, []_0) -> part_4_out_aaaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_aaaa6(X, Y, Xs, Ls, Bs, part_4_out_aaaa4(X, Xs, Ls, Bs)) -> part_4_out_aaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_qs_2_in_1_ag4(X, Xs, Ys, part_4_out_aaaa4(X, Xs, Littles, Bigs)) -> if_qs_2_in_2_ag6(X, Xs, Ys, Littles, Bigs, qs_2_in_ga2(Littles, Ls))
qs_2_in_ga2([]_0, []_0) -> qs_2_out_ga2([]_0, []_0)
qs_2_in_ga2(._22(X, Xs), Ys) -> if_qs_2_in_1_ga4(X, Xs, Ys, part_4_in_agaa4(X, Xs, Littles, Bigs))
part_4_in_agaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_agaa6(X, Y, Xs, Ls, Bs, less_2_in_aa2(X, Y))
if_part_4_in_1_agaa6(X, Y, Xs, Ls, Bs, less_2_out_aa2(X, Y)) -> if_part_4_in_2_agaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_ggaa6(X, Y, Xs, Ls, Bs, less_2_in_ga2(X, Y))
if_part_4_in_1_ggaa6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> if_part_4_in_2_ggaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_ggaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(underscore, []_0, []_0, []_0) -> part_4_out_ggaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_ggaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_ggaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_part_4_in_2_ggaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_ggaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
if_part_4_in_2_agaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_agaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
part_4_in_agaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_agaa6(X, Y, Xs, Ls, Bs, part_4_in_agaa4(X, Xs, Ls, Bs))
part_4_in_agaa4(underscore, []_0, []_0, []_0) -> part_4_out_agaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_agaa6(X, Y, Xs, Ls, Bs, part_4_out_agaa4(X, Xs, Ls, Bs)) -> part_4_out_agaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_qs_2_in_1_ga4(X, Xs, Ys, part_4_out_agaa4(X, Xs, Littles, Bigs)) -> if_qs_2_in_2_ga6(X, Xs, Ys, Littles, Bigs, qs_2_in_ga2(Littles, Ls))
if_qs_2_in_2_ga6(X, Xs, Ys, Littles, Bigs, qs_2_out_ga2(Littles, Ls)) -> if_qs_2_in_3_ga6(X, Xs, Ys, Bigs, Ls, qs_2_in_ga2(Bigs, Bs))
if_qs_2_in_3_ga6(X, Xs, Ys, Bigs, Ls, qs_2_out_ga2(Bigs, Bs)) -> if_qs_2_in_4_ga6(X, Xs, Ys, Ls, Bs, app_3_in_gga3(Ls, ._22(X, Bs), Ys))
app_3_in_gga3([]_0, X, X) -> app_3_out_gga3([]_0, X, X)
app_3_in_gga3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_gga5(X, Xs, Ys, Zs, app_3_in_gga3(Xs, Ys, Zs))
if_app_3_in_1_gga5(X, Xs, Ys, Zs, app_3_out_gga3(Xs, Ys, Zs)) -> app_3_out_gga3(._22(X, Xs), Ys, ._22(X, Zs))
if_qs_2_in_4_ga6(X, Xs, Ys, Ls, Bs, app_3_out_gga3(Ls, ._22(X, Bs), Ys)) -> qs_2_out_ga2(._22(X, Xs), Ys)
if_qs_2_in_2_ag6(X, Xs, Ys, Littles, Bigs, qs_2_out_ga2(Littles, Ls)) -> if_qs_2_in_3_ag6(X, Xs, Ys, Bigs, Ls, qs_2_in_ga2(Bigs, Bs))
if_qs_2_in_3_ag6(X, Xs, Ys, Bigs, Ls, qs_2_out_ga2(Bigs, Bs)) -> if_qs_2_in_4_ag6(X, Xs, Ys, Ls, Bs, app_3_in_ggg3(Ls, ._22(X, Bs), Ys))
app_3_in_ggg3([]_0, X, X) -> app_3_out_ggg3([]_0, X, X)
app_3_in_ggg3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_ggg5(X, Xs, Ys, Zs, app_3_in_ggg3(Xs, Ys, Zs))
if_app_3_in_1_ggg5(X, Xs, Ys, Zs, app_3_out_ggg3(Xs, Ys, Zs)) -> app_3_out_ggg3(._22(X, Xs), Ys, ._22(X, Zs))
if_qs_2_in_4_ag6(X, Xs, Ys, Ls, Bs, app_3_out_ggg3(Ls, ._22(X, Bs), Ys)) -> qs_2_out_ag2(._22(X, Xs), Ys)

The argument filtering Pi contains the following mapping:
qs_2_in_ag2(x1, x2)  =  qs_2_in_ag1(x2)
[]_0  =  []_0
._22(x1, x2)  =  ._21(x2)
0_0  =  0_0
s_11(x1)  =  s_1
qs_2_out_ag2(x1, x2)  =  qs_2_out_ag2(x1, x2)
if_qs_2_in_1_ag4(x1, x2, x3, x4)  =  if_qs_2_in_1_ag2(x3, x4)
part_4_in_aaaa4(x1, x2, x3, x4)  =  part_4_in_aaaa
if_part_4_in_1_aaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_aaaa1(x6)
less_2_in_aa2(x1, x2)  =  less_2_in_aa
less_2_out_aa2(x1, x2)  =  less_2_out_aa2(x1, x2)
if_less_2_in_1_aa3(x1, x2, x3)  =  if_less_2_in_1_aa1(x3)
if_part_4_in_2_aaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_aaaa1(x6)
part_4_in_gaaa4(x1, x2, x3, x4)  =  part_4_in_gaaa1(x1)
if_part_4_in_1_gaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_gaaa2(x1, x6)
less_2_in_ga2(x1, x2)  =  less_2_in_ga1(x1)
less_2_out_ga2(x1, x2)  =  less_2_out_ga2(x1, x2)
if_less_2_in_1_ga3(x1, x2, x3)  =  if_less_2_in_1_ga1(x3)
if_part_4_in_2_gaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_gaaa2(x1, x6)
if_part_4_in_3_gaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_gaaa2(x1, x6)
part_4_out_gaaa4(x1, x2, x3, x4)  =  part_4_out_gaaa4(x1, x2, x3, x4)
part_4_out_aaaa4(x1, x2, x3, x4)  =  part_4_out_aaaa3(x2, x3, x4)
if_part_4_in_3_aaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_aaaa1(x6)
if_qs_2_in_2_ag6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_2_ag4(x2, x3, x5, x6)
qs_2_in_ga2(x1, x2)  =  qs_2_in_ga1(x1)
qs_2_out_ga2(x1, x2)  =  qs_2_out_ga2(x1, x2)
if_qs_2_in_1_ga4(x1, x2, x3, x4)  =  if_qs_2_in_1_ga2(x2, x4)
part_4_in_agaa4(x1, x2, x3, x4)  =  part_4_in_agaa1(x2)
if_part_4_in_1_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_agaa2(x3, x6)
if_part_4_in_2_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_agaa2(x3, x6)
part_4_in_ggaa4(x1, x2, x3, x4)  =  part_4_in_ggaa2(x1, x2)
if_part_4_in_1_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_ggaa3(x1, x3, x6)
if_part_4_in_2_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_ggaa3(x1, x3, x6)
if_part_4_in_3_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_ggaa3(x1, x3, x6)
part_4_out_ggaa4(x1, x2, x3, x4)  =  part_4_out_ggaa4(x1, x2, x3, x4)
part_4_out_agaa4(x1, x2, x3, x4)  =  part_4_out_agaa3(x2, x3, x4)
if_part_4_in_3_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_agaa2(x3, x6)
if_qs_2_in_2_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_2_ga3(x2, x5, x6)
if_qs_2_in_3_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_3_ga3(x2, x5, x6)
if_qs_2_in_4_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_4_ga2(x2, x6)
app_3_in_gga3(x1, x2, x3)  =  app_3_in_gga2(x1, x2)
app_3_out_gga3(x1, x2, x3)  =  app_3_out_gga3(x1, x2, x3)
if_app_3_in_1_gga5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_gga3(x2, x3, x5)
if_qs_2_in_3_ag6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_3_ag4(x2, x3, x5, x6)
if_qs_2_in_4_ag6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_4_ag3(x2, x3, x6)
app_3_in_ggg3(x1, x2, x3)  =  app_3_in_ggg3(x1, x2, x3)
app_3_out_ggg3(x1, x2, x3)  =  app_3_out_ggg3(x1, x2, x3)
if_app_3_in_1_ggg5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_ggg4(x2, x3, x4, x5)
PART_4_IN_GAAA4(x1, x2, x3, x4)  =  PART_4_IN_GAAA1(x1)
IF_PART_4_IN_1_GAAA6(x1, x2, x3, x4, x5, x6)  =  IF_PART_4_IN_1_GAAA2(x1, x6)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

PART_4_IN_GAAA4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> IF_PART_4_IN_1_GAAA6(X, Y, Xs, Ls, Bs, less_2_in_ga2(X, Y))
PART_4_IN_GAAA4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> PART_4_IN_GAAA4(X, Xs, Ls, Bs)
IF_PART_4_IN_1_GAAA6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> PART_4_IN_GAAA4(X, Xs, Ls, Bs)

The TRS R consists of the following rules:

less_2_in_ga2(0_0, s_11(underscore1)) -> less_2_out_ga2(0_0, s_11(underscore1))
less_2_in_ga2(s_11(X), s_11(Y)) -> if_less_2_in_1_ga3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_ga3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_ga2(s_11(X), s_11(Y))
less_2_in_aa2(0_0, s_11(underscore1)) -> less_2_out_aa2(0_0, s_11(underscore1))
less_2_in_aa2(s_11(X), s_11(Y)) -> if_less_2_in_1_aa3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_aa3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_aa2(s_11(X), s_11(Y))

The argument filtering Pi contains the following mapping:
._22(x1, x2)  =  ._21(x2)
0_0  =  0_0
s_11(x1)  =  s_1
less_2_in_aa2(x1, x2)  =  less_2_in_aa
less_2_out_aa2(x1, x2)  =  less_2_out_aa2(x1, x2)
if_less_2_in_1_aa3(x1, x2, x3)  =  if_less_2_in_1_aa1(x3)
less_2_in_ga2(x1, x2)  =  less_2_in_ga1(x1)
less_2_out_ga2(x1, x2)  =  less_2_out_ga2(x1, x2)
if_less_2_in_1_ga3(x1, x2, x3)  =  if_less_2_in_1_ga1(x3)
PART_4_IN_GAAA4(x1, x2, x3, x4)  =  PART_4_IN_GAAA1(x1)
IF_PART_4_IN_1_GAAA6(x1, x2, x3, x4, x5, x6)  =  IF_PART_4_IN_1_GAAA2(x1, x6)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ RuleRemovalProof
              ↳ PiDP

Q DP problem:
The TRS P consists of the following rules:

PART_4_IN_GAAA1(X) -> IF_PART_4_IN_1_GAAA2(X, less_2_in_ga1(X))
IF_PART_4_IN_1_GAAA2(X, less_2_out_ga2(X, Y)) -> PART_4_IN_GAAA1(X)
PART_4_IN_GAAA1(X) -> PART_4_IN_GAAA1(X)

The TRS R consists of the following rules:

less_2_in_ga1(0_0) -> less_2_out_ga2(0_0, s_1)
less_2_in_ga1(s_1) -> if_less_2_in_1_ga1(less_2_in_aa)
if_less_2_in_1_ga1(less_2_out_aa2(X, Y)) -> less_2_out_ga2(s_1, s_1)
less_2_in_aa -> less_2_out_aa2(0_0, s_1)
less_2_in_aa -> if_less_2_in_1_aa1(less_2_in_aa)
if_less_2_in_1_aa1(less_2_out_aa2(X, Y)) -> less_2_out_aa2(s_1, s_1)

The set Q consists of the following terms:

less_2_in_ga1(x0)
if_less_2_in_1_ga1(x0)
less_2_in_aa
if_less_2_in_1_aa1(x0)

We have to consider all (P,Q,R)-chains.
By using a polynomial ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.


Used ordering: POLO with Polynomial interpretation:

POL(0_0) = 0   
POL(less_2_in_ga1(x1)) = x1   
POL(less_2_in_aa) = 0   
POL(less_2_out_ga2(x1, x2)) = x1 + x2   
POL(less_2_out_aa2(x1, x2)) = x1 + x2   
POL(if_less_2_in_1_aa1(x1)) = x1   
POL(s_1) = 0   
POL(if_less_2_in_1_ga1(x1)) = x1   
POL(IF_PART_4_IN_1_GAAA2(x1, x2)) = x1 + x2   
POL(PART_4_IN_GAAA1(x1)) = 2·x1   



↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
                      ↳ QDP
                        ↳ RuleRemovalProof
QDP
                            ↳ RuleRemovalProof
              ↳ PiDP

Q DP problem:
The TRS P consists of the following rules:

PART_4_IN_GAAA1(X) -> IF_PART_4_IN_1_GAAA2(X, less_2_in_ga1(X))
IF_PART_4_IN_1_GAAA2(X, less_2_out_ga2(X, Y)) -> PART_4_IN_GAAA1(X)
PART_4_IN_GAAA1(X) -> PART_4_IN_GAAA1(X)

The TRS R consists of the following rules:

less_2_in_ga1(0_0) -> less_2_out_ga2(0_0, s_1)
less_2_in_ga1(s_1) -> if_less_2_in_1_ga1(less_2_in_aa)
if_less_2_in_1_ga1(less_2_out_aa2(X, Y)) -> less_2_out_ga2(s_1, s_1)
less_2_in_aa -> less_2_out_aa2(0_0, s_1)
less_2_in_aa -> if_less_2_in_1_aa1(less_2_in_aa)
if_less_2_in_1_aa1(less_2_out_aa2(X, Y)) -> less_2_out_aa2(s_1, s_1)

The set Q consists of the following terms:

less_2_in_ga1(x0)
if_less_2_in_1_ga1(x0)
less_2_in_aa
if_less_2_in_1_aa1(x0)

We have to consider all (P,Q,R)-chains.
By using a polynomial ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.


Used ordering: POLO with Polynomial interpretation:

POL(0_0) = 0   
POL(less_2_in_ga1(x1)) = x1   
POL(less_2_in_aa) = 0   
POL(less_2_out_ga2(x1, x2)) = x1 + x2   
POL(less_2_out_aa2(x1, x2)) = x1 + x2   
POL(if_less_2_in_1_aa1(x1)) = x1   
POL(s_1) = 0   
POL(if_less_2_in_1_ga1(x1)) = x1   
POL(IF_PART_4_IN_1_GAAA2(x1, x2)) = x1 + x2   
POL(PART_4_IN_GAAA1(x1)) = 2·x1   



↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
                      ↳ QDP
                        ↳ RuleRemovalProof
                          ↳ QDP
                            ↳ RuleRemovalProof
QDP
                                ↳ RuleRemovalProof
              ↳ PiDP

Q DP problem:
The TRS P consists of the following rules:

PART_4_IN_GAAA1(X) -> IF_PART_4_IN_1_GAAA2(X, less_2_in_ga1(X))
IF_PART_4_IN_1_GAAA2(X, less_2_out_ga2(X, Y)) -> PART_4_IN_GAAA1(X)
PART_4_IN_GAAA1(X) -> PART_4_IN_GAAA1(X)

The TRS R consists of the following rules:

less_2_in_ga1(0_0) -> less_2_out_ga2(0_0, s_1)
less_2_in_ga1(s_1) -> if_less_2_in_1_ga1(less_2_in_aa)
if_less_2_in_1_ga1(less_2_out_aa2(X, Y)) -> less_2_out_ga2(s_1, s_1)
less_2_in_aa -> less_2_out_aa2(0_0, s_1)
less_2_in_aa -> if_less_2_in_1_aa1(less_2_in_aa)
if_less_2_in_1_aa1(less_2_out_aa2(X, Y)) -> less_2_out_aa2(s_1, s_1)

The set Q consists of the following terms:

less_2_in_ga1(x0)
if_less_2_in_1_ga1(x0)
less_2_in_aa
if_less_2_in_1_aa1(x0)

We have to consider all (P,Q,R)-chains.
By using a polynomial ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.


Used ordering: POLO with Polynomial interpretation:

POL(0_0) = 0   
POL(less_2_in_ga1(x1)) = x1   
POL(less_2_in_aa) = 0   
POL(less_2_out_ga2(x1, x2)) = x1 + x2   
POL(less_2_out_aa2(x1, x2)) = x1 + x2   
POL(if_less_2_in_1_aa1(x1)) = x1   
POL(s_1) = 0   
POL(if_less_2_in_1_ga1(x1)) = x1   
POL(IF_PART_4_IN_1_GAAA2(x1, x2)) = x1 + x2   
POL(PART_4_IN_GAAA1(x1)) = 2·x1   



↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
                      ↳ QDP
                        ↳ RuleRemovalProof
                          ↳ QDP
                            ↳ RuleRemovalProof
                              ↳ QDP
                                ↳ RuleRemovalProof
QDP
                                    ↳ RuleRemovalProof
              ↳ PiDP

Q DP problem:
The TRS P consists of the following rules:

PART_4_IN_GAAA1(X) -> IF_PART_4_IN_1_GAAA2(X, less_2_in_ga1(X))
IF_PART_4_IN_1_GAAA2(X, less_2_out_ga2(X, Y)) -> PART_4_IN_GAAA1(X)
PART_4_IN_GAAA1(X) -> PART_4_IN_GAAA1(X)

The TRS R consists of the following rules:

less_2_in_ga1(0_0) -> less_2_out_ga2(0_0, s_1)
less_2_in_ga1(s_1) -> if_less_2_in_1_ga1(less_2_in_aa)
if_less_2_in_1_ga1(less_2_out_aa2(X, Y)) -> less_2_out_ga2(s_1, s_1)
less_2_in_aa -> less_2_out_aa2(0_0, s_1)
less_2_in_aa -> if_less_2_in_1_aa1(less_2_in_aa)
if_less_2_in_1_aa1(less_2_out_aa2(X, Y)) -> less_2_out_aa2(s_1, s_1)

The set Q consists of the following terms:

less_2_in_ga1(x0)
if_less_2_in_1_ga1(x0)
less_2_in_aa
if_less_2_in_1_aa1(x0)

We have to consider all (P,Q,R)-chains.
By using a polynomial ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.


Used ordering: POLO with Polynomial interpretation:

POL(0_0) = 0   
POL(less_2_in_ga1(x1)) = x1   
POL(less_2_in_aa) = 0   
POL(less_2_out_ga2(x1, x2)) = x1 + x2   
POL(less_2_out_aa2(x1, x2)) = x1 + x2   
POL(if_less_2_in_1_aa1(x1)) = x1   
POL(s_1) = 0   
POL(if_less_2_in_1_ga1(x1)) = x1   
POL(IF_PART_4_IN_1_GAAA2(x1, x2)) = x1 + x2   
POL(PART_4_IN_GAAA1(x1)) = 2·x1   



↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
                      ↳ QDP
                        ↳ RuleRemovalProof
                          ↳ QDP
                            ↳ RuleRemovalProof
                              ↳ QDP
                                ↳ RuleRemovalProof
                                  ↳ QDP
                                    ↳ RuleRemovalProof
QDP
                                        ↳ RuleRemovalProof
              ↳ PiDP

Q DP problem:
The TRS P consists of the following rules:

PART_4_IN_GAAA1(X) -> IF_PART_4_IN_1_GAAA2(X, less_2_in_ga1(X))
IF_PART_4_IN_1_GAAA2(X, less_2_out_ga2(X, Y)) -> PART_4_IN_GAAA1(X)
PART_4_IN_GAAA1(X) -> PART_4_IN_GAAA1(X)

The TRS R consists of the following rules:

less_2_in_ga1(0_0) -> less_2_out_ga2(0_0, s_1)
less_2_in_ga1(s_1) -> if_less_2_in_1_ga1(less_2_in_aa)
if_less_2_in_1_ga1(less_2_out_aa2(X, Y)) -> less_2_out_ga2(s_1, s_1)
less_2_in_aa -> less_2_out_aa2(0_0, s_1)
less_2_in_aa -> if_less_2_in_1_aa1(less_2_in_aa)
if_less_2_in_1_aa1(less_2_out_aa2(X, Y)) -> less_2_out_aa2(s_1, s_1)

The set Q consists of the following terms:

less_2_in_ga1(x0)
if_less_2_in_1_ga1(x0)
less_2_in_aa
if_less_2_in_1_aa1(x0)

We have to consider all (P,Q,R)-chains.
By using a polynomial ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.


Used ordering: POLO with Polynomial interpretation:

POL(0_0) = 0   
POL(less_2_in_ga1(x1)) = x1   
POL(less_2_in_aa) = 0   
POL(less_2_out_ga2(x1, x2)) = x1 + x2   
POL(less_2_out_aa2(x1, x2)) = x1 + x2   
POL(if_less_2_in_1_aa1(x1)) = x1   
POL(s_1) = 0   
POL(if_less_2_in_1_ga1(x1)) = x1   
POL(IF_PART_4_IN_1_GAAA2(x1, x2)) = x1 + x2   
POL(PART_4_IN_GAAA1(x1)) = 2·x1   



↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
                      ↳ QDP
                        ↳ RuleRemovalProof
                          ↳ QDP
                            ↳ RuleRemovalProof
                              ↳ QDP
                                ↳ RuleRemovalProof
                                  ↳ QDP
                                    ↳ RuleRemovalProof
                                      ↳ QDP
                                        ↳ RuleRemovalProof
QDP
                                            ↳ RuleRemovalProof
              ↳ PiDP

Q DP problem:
The TRS P consists of the following rules:

PART_4_IN_GAAA1(X) -> IF_PART_4_IN_1_GAAA2(X, less_2_in_ga1(X))
IF_PART_4_IN_1_GAAA2(X, less_2_out_ga2(X, Y)) -> PART_4_IN_GAAA1(X)
PART_4_IN_GAAA1(X) -> PART_4_IN_GAAA1(X)

The TRS R consists of the following rules:

less_2_in_ga1(0_0) -> less_2_out_ga2(0_0, s_1)
less_2_in_ga1(s_1) -> if_less_2_in_1_ga1(less_2_in_aa)
if_less_2_in_1_ga1(less_2_out_aa2(X, Y)) -> less_2_out_ga2(s_1, s_1)
less_2_in_aa -> less_2_out_aa2(0_0, s_1)
less_2_in_aa -> if_less_2_in_1_aa1(less_2_in_aa)
if_less_2_in_1_aa1(less_2_out_aa2(X, Y)) -> less_2_out_aa2(s_1, s_1)

The set Q consists of the following terms:

less_2_in_ga1(x0)
if_less_2_in_1_ga1(x0)
less_2_in_aa
if_less_2_in_1_aa1(x0)

We have to consider all (P,Q,R)-chains.
By using a polynomial ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.


Used ordering: POLO with Polynomial interpretation:

POL(0_0) = 0   
POL(less_2_in_ga1(x1)) = x1   
POL(less_2_in_aa) = 0   
POL(less_2_out_ga2(x1, x2)) = x1 + x2   
POL(less_2_out_aa2(x1, x2)) = x1 + x2   
POL(if_less_2_in_1_aa1(x1)) = x1   
POL(s_1) = 0   
POL(if_less_2_in_1_ga1(x1)) = x1   
POL(IF_PART_4_IN_1_GAAA2(x1, x2)) = x1 + x2   
POL(PART_4_IN_GAAA1(x1)) = 2·x1   



↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
                      ↳ QDP
                        ↳ RuleRemovalProof
                          ↳ QDP
                            ↳ RuleRemovalProof
                              ↳ QDP
                                ↳ RuleRemovalProof
                                  ↳ QDP
                                    ↳ RuleRemovalProof
                                      ↳ QDP
                                        ↳ RuleRemovalProof
                                          ↳ QDP
                                            ↳ RuleRemovalProof
QDP
              ↳ PiDP

Q DP problem:
The TRS P consists of the following rules:

PART_4_IN_GAAA1(X) -> IF_PART_4_IN_1_GAAA2(X, less_2_in_ga1(X))
IF_PART_4_IN_1_GAAA2(X, less_2_out_ga2(X, Y)) -> PART_4_IN_GAAA1(X)
PART_4_IN_GAAA1(X) -> PART_4_IN_GAAA1(X)

The TRS R consists of the following rules:

less_2_in_ga1(0_0) -> less_2_out_ga2(0_0, s_1)
less_2_in_ga1(s_1) -> if_less_2_in_1_ga1(less_2_in_aa)
if_less_2_in_1_ga1(less_2_out_aa2(X, Y)) -> less_2_out_ga2(s_1, s_1)
less_2_in_aa -> less_2_out_aa2(0_0, s_1)
less_2_in_aa -> if_less_2_in_1_aa1(less_2_in_aa)
if_less_2_in_1_aa1(less_2_out_aa2(X, Y)) -> less_2_out_aa2(s_1, s_1)

The set Q consists of the following terms:

less_2_in_ga1(x0)
if_less_2_in_1_ga1(x0)
less_2_in_aa
if_less_2_in_1_aa1(x0)

We have to consider all (P,Q,R)-chains.

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
PiDP
                ↳ UsableRulesProof

Pi DP problem:
The TRS P consists of the following rules:

PART_4_IN_AAAA4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> PART_4_IN_AAAA4(X, Xs, Ls, Bs)

The TRS R consists of the following rules:

qs_2_in_ag2([]_0, []_0) -> qs_2_out_ag2([]_0, []_0)
qs_2_in_ag2(._22(X, Xs), Ys) -> if_qs_2_in_1_ag4(X, Xs, Ys, part_4_in_aaaa4(X, Xs, Littles, Bigs))
part_4_in_aaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_aaaa6(X, Y, Xs, Ls, Bs, less_2_in_aa2(X, Y))
less_2_in_aa2(0_0, s_11(underscore1)) -> less_2_out_aa2(0_0, s_11(underscore1))
less_2_in_aa2(s_11(X), s_11(Y)) -> if_less_2_in_1_aa3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_aa3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_aa2(s_11(X), s_11(Y))
if_part_4_in_1_aaaa6(X, Y, Xs, Ls, Bs, less_2_out_aa2(X, Y)) -> if_part_4_in_2_aaaa6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
part_4_in_gaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_gaaa6(X, Y, Xs, Ls, Bs, less_2_in_ga2(X, Y))
less_2_in_ga2(0_0, s_11(underscore1)) -> less_2_out_ga2(0_0, s_11(underscore1))
less_2_in_ga2(s_11(X), s_11(Y)) -> if_less_2_in_1_ga3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_ga3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_ga2(s_11(X), s_11(Y))
if_part_4_in_1_gaaa6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> if_part_4_in_2_gaaa6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
part_4_in_gaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_gaaa6(X, Y, Xs, Ls, Bs, part_4_in_gaaa4(X, Xs, Ls, Bs))
part_4_in_gaaa4(underscore, []_0, []_0, []_0) -> part_4_out_gaaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_gaaa6(X, Y, Xs, Ls, Bs, part_4_out_gaaa4(X, Xs, Ls, Bs)) -> part_4_out_gaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_part_4_in_2_gaaa6(X, Y, Xs, Ls, Bs, part_4_out_gaaa4(X, Xs, Ls, Bs)) -> part_4_out_gaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
if_part_4_in_2_aaaa6(X, Y, Xs, Ls, Bs, part_4_out_gaaa4(X, Xs, Ls, Bs)) -> part_4_out_aaaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
part_4_in_aaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_aaaa6(X, Y, Xs, Ls, Bs, part_4_in_aaaa4(X, Xs, Ls, Bs))
part_4_in_aaaa4(underscore, []_0, []_0, []_0) -> part_4_out_aaaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_aaaa6(X, Y, Xs, Ls, Bs, part_4_out_aaaa4(X, Xs, Ls, Bs)) -> part_4_out_aaaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_qs_2_in_1_ag4(X, Xs, Ys, part_4_out_aaaa4(X, Xs, Littles, Bigs)) -> if_qs_2_in_2_ag6(X, Xs, Ys, Littles, Bigs, qs_2_in_ga2(Littles, Ls))
qs_2_in_ga2([]_0, []_0) -> qs_2_out_ga2([]_0, []_0)
qs_2_in_ga2(._22(X, Xs), Ys) -> if_qs_2_in_1_ga4(X, Xs, Ys, part_4_in_agaa4(X, Xs, Littles, Bigs))
part_4_in_agaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_agaa6(X, Y, Xs, Ls, Bs, less_2_in_aa2(X, Y))
if_part_4_in_1_agaa6(X, Y, Xs, Ls, Bs, less_2_out_aa2(X, Y)) -> if_part_4_in_2_agaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs) -> if_part_4_in_1_ggaa6(X, Y, Xs, Ls, Bs, less_2_in_ga2(X, Y))
if_part_4_in_1_ggaa6(X, Y, Xs, Ls, Bs, less_2_out_ga2(X, Y)) -> if_part_4_in_2_ggaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_ggaa6(X, Y, Xs, Ls, Bs, part_4_in_ggaa4(X, Xs, Ls, Bs))
part_4_in_ggaa4(underscore, []_0, []_0, []_0) -> part_4_out_ggaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_ggaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_ggaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_part_4_in_2_ggaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_ggaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
if_part_4_in_2_agaa6(X, Y, Xs, Ls, Bs, part_4_out_ggaa4(X, Xs, Ls, Bs)) -> part_4_out_agaa4(X, ._22(Y, Xs), ._22(Y, Ls), Bs)
part_4_in_agaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> if_part_4_in_3_agaa6(X, Y, Xs, Ls, Bs, part_4_in_agaa4(X, Xs, Ls, Bs))
part_4_in_agaa4(underscore, []_0, []_0, []_0) -> part_4_out_agaa4(underscore, []_0, []_0, []_0)
if_part_4_in_3_agaa6(X, Y, Xs, Ls, Bs, part_4_out_agaa4(X, Xs, Ls, Bs)) -> part_4_out_agaa4(X, ._22(Y, Xs), Ls, ._22(Y, Bs))
if_qs_2_in_1_ga4(X, Xs, Ys, part_4_out_agaa4(X, Xs, Littles, Bigs)) -> if_qs_2_in_2_ga6(X, Xs, Ys, Littles, Bigs, qs_2_in_ga2(Littles, Ls))
if_qs_2_in_2_ga6(X, Xs, Ys, Littles, Bigs, qs_2_out_ga2(Littles, Ls)) -> if_qs_2_in_3_ga6(X, Xs, Ys, Bigs, Ls, qs_2_in_ga2(Bigs, Bs))
if_qs_2_in_3_ga6(X, Xs, Ys, Bigs, Ls, qs_2_out_ga2(Bigs, Bs)) -> if_qs_2_in_4_ga6(X, Xs, Ys, Ls, Bs, app_3_in_gga3(Ls, ._22(X, Bs), Ys))
app_3_in_gga3([]_0, X, X) -> app_3_out_gga3([]_0, X, X)
app_3_in_gga3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_gga5(X, Xs, Ys, Zs, app_3_in_gga3(Xs, Ys, Zs))
if_app_3_in_1_gga5(X, Xs, Ys, Zs, app_3_out_gga3(Xs, Ys, Zs)) -> app_3_out_gga3(._22(X, Xs), Ys, ._22(X, Zs))
if_qs_2_in_4_ga6(X, Xs, Ys, Ls, Bs, app_3_out_gga3(Ls, ._22(X, Bs), Ys)) -> qs_2_out_ga2(._22(X, Xs), Ys)
if_qs_2_in_2_ag6(X, Xs, Ys, Littles, Bigs, qs_2_out_ga2(Littles, Ls)) -> if_qs_2_in_3_ag6(X, Xs, Ys, Bigs, Ls, qs_2_in_ga2(Bigs, Bs))
if_qs_2_in_3_ag6(X, Xs, Ys, Bigs, Ls, qs_2_out_ga2(Bigs, Bs)) -> if_qs_2_in_4_ag6(X, Xs, Ys, Ls, Bs, app_3_in_ggg3(Ls, ._22(X, Bs), Ys))
app_3_in_ggg3([]_0, X, X) -> app_3_out_ggg3([]_0, X, X)
app_3_in_ggg3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_ggg5(X, Xs, Ys, Zs, app_3_in_ggg3(Xs, Ys, Zs))
if_app_3_in_1_ggg5(X, Xs, Ys, Zs, app_3_out_ggg3(Xs, Ys, Zs)) -> app_3_out_ggg3(._22(X, Xs), Ys, ._22(X, Zs))
if_qs_2_in_4_ag6(X, Xs, Ys, Ls, Bs, app_3_out_ggg3(Ls, ._22(X, Bs), Ys)) -> qs_2_out_ag2(._22(X, Xs), Ys)

The argument filtering Pi contains the following mapping:
qs_2_in_ag2(x1, x2)  =  qs_2_in_ag1(x2)
[]_0  =  []_0
._22(x1, x2)  =  ._21(x2)
0_0  =  0_0
s_11(x1)  =  s_1
qs_2_out_ag2(x1, x2)  =  qs_2_out_ag2(x1, x2)
if_qs_2_in_1_ag4(x1, x2, x3, x4)  =  if_qs_2_in_1_ag2(x3, x4)
part_4_in_aaaa4(x1, x2, x3, x4)  =  part_4_in_aaaa
if_part_4_in_1_aaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_aaaa1(x6)
less_2_in_aa2(x1, x2)  =  less_2_in_aa
less_2_out_aa2(x1, x2)  =  less_2_out_aa2(x1, x2)
if_less_2_in_1_aa3(x1, x2, x3)  =  if_less_2_in_1_aa1(x3)
if_part_4_in_2_aaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_aaaa1(x6)
part_4_in_gaaa4(x1, x2, x3, x4)  =  part_4_in_gaaa1(x1)
if_part_4_in_1_gaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_gaaa2(x1, x6)
less_2_in_ga2(x1, x2)  =  less_2_in_ga1(x1)
less_2_out_ga2(x1, x2)  =  less_2_out_ga2(x1, x2)
if_less_2_in_1_ga3(x1, x2, x3)  =  if_less_2_in_1_ga1(x3)
if_part_4_in_2_gaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_gaaa2(x1, x6)
if_part_4_in_3_gaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_gaaa2(x1, x6)
part_4_out_gaaa4(x1, x2, x3, x4)  =  part_4_out_gaaa4(x1, x2, x3, x4)
part_4_out_aaaa4(x1, x2, x3, x4)  =  part_4_out_aaaa3(x2, x3, x4)
if_part_4_in_3_aaaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_aaaa1(x6)
if_qs_2_in_2_ag6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_2_ag4(x2, x3, x5, x6)
qs_2_in_ga2(x1, x2)  =  qs_2_in_ga1(x1)
qs_2_out_ga2(x1, x2)  =  qs_2_out_ga2(x1, x2)
if_qs_2_in_1_ga4(x1, x2, x3, x4)  =  if_qs_2_in_1_ga2(x2, x4)
part_4_in_agaa4(x1, x2, x3, x4)  =  part_4_in_agaa1(x2)
if_part_4_in_1_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_agaa2(x3, x6)
if_part_4_in_2_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_agaa2(x3, x6)
part_4_in_ggaa4(x1, x2, x3, x4)  =  part_4_in_ggaa2(x1, x2)
if_part_4_in_1_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_1_ggaa3(x1, x3, x6)
if_part_4_in_2_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_2_ggaa3(x1, x3, x6)
if_part_4_in_3_ggaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_ggaa3(x1, x3, x6)
part_4_out_ggaa4(x1, x2, x3, x4)  =  part_4_out_ggaa4(x1, x2, x3, x4)
part_4_out_agaa4(x1, x2, x3, x4)  =  part_4_out_agaa3(x2, x3, x4)
if_part_4_in_3_agaa6(x1, x2, x3, x4, x5, x6)  =  if_part_4_in_3_agaa2(x3, x6)
if_qs_2_in_2_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_2_ga3(x2, x5, x6)
if_qs_2_in_3_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_3_ga3(x2, x5, x6)
if_qs_2_in_4_ga6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_4_ga2(x2, x6)
app_3_in_gga3(x1, x2, x3)  =  app_3_in_gga2(x1, x2)
app_3_out_gga3(x1, x2, x3)  =  app_3_out_gga3(x1, x2, x3)
if_app_3_in_1_gga5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_gga3(x2, x3, x5)
if_qs_2_in_3_ag6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_3_ag4(x2, x3, x5, x6)
if_qs_2_in_4_ag6(x1, x2, x3, x4, x5, x6)  =  if_qs_2_in_4_ag3(x2, x3, x6)
app_3_in_ggg3(x1, x2, x3)  =  app_3_in_ggg3(x1, x2, x3)
app_3_out_ggg3(x1, x2, x3)  =  app_3_out_ggg3(x1, x2, x3)
if_app_3_in_1_ggg5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_ggg4(x2, x3, x4, x5)
PART_4_IN_AAAA4(x1, x2, x3, x4)  =  PART_4_IN_AAAA

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof

Pi DP problem:
The TRS P consists of the following rules:

PART_4_IN_AAAA4(X, ._22(Y, Xs), Ls, ._22(Y, Bs)) -> PART_4_IN_AAAA4(X, Xs, Ls, Bs)

R is empty.
The argument filtering Pi contains the following mapping:
._22(x1, x2)  =  ._21(x2)
PART_4_IN_AAAA4(x1, x2, x3, x4)  =  PART_4_IN_AAAA

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP

Q DP problem:
The TRS P consists of the following rules:

PART_4_IN_AAAA -> PART_4_IN_AAAA

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.